Extension of Isometries

  • Herbert Gross
Part of the Progress in Mathematics book series (PM, volume 1)


The main result in this chapter is a theorem in [1] on the extension of isometries φ: V →V between ⊥-closed subspaces of a sesquilinear space E (Theorems 5 and 9 below).


Closed Subspace Dual Pair Subspace Versus Isotropic Subspace Quotient Topology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Allenspach, Erweiterung von Isometrien in alternierenden Räumen. Ph. D. Thesis, University of Zurich 1973.Google Scholar
  2. [2]
    W. Bäni, Linear topologies and sesquilinear forms. Comm. in Algebra 14 (1977), 1561–1587.CrossRefGoogle Scholar
  3. [3]
    L. Brand, Erweiterung von algebraischen Isometrien in sesquilinearen Räumen. Ph. D. Thesis, University of Zurich 1974.Google Scholar
  4. [4]
    J. Dieudonné, La dualité dans les espaces vectoriels topologiques. Ann. Ecole Norm. Sup. 59 (1942), 108–139.Google Scholar
  5. [5]
    H. Gross and E. Ogg, Quadratic forms and linear topologies. On completions. Ann. Acad. Sci. Fenn. Ser. A. I, 584 (1974), 1–19.Google Scholar
  6. [6]
    G. Köthe, Topological Vector Spaces I. Grundlehren Band 159, Springer Berlin, Heidelberg, New York 1969.Google Scholar
  7. [7]
    G. W. Mackey, On infinite-dimensional linear spaces. Trans. Amer. Math. Soc. 57 (1945), 155–207.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    F. Maeda and S. Maeda, Theory of symmetric lattices. Grundlehren Band 173, Springer Berlin, Heidelberg, New York 1970.Google Scholar
  9. [9]
    S. Maeda, Remarks on the problems in the book: Theory of symmetric lattices. Contained in Colloquia Mathematica Societatis Janos Bolyai 14, Lattice Theory, Szeged (Hungary) (1974), 227–229.Google Scholar
  10. [10]
    E. Ogg, Die abzählbare Topologie und die Existenz von Orthogonalbasen in unendlichdimensionalen Räumen. Math. Ann. 188 (1970), 233–250.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Herbert Gross
    • 1
  1. 1.Mathematisches InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations