Human Melatonin Secretion, Its Endogenous Circadian Pacemaker and the Effects of Light

  • Alfred J. Lewy
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 65)


Elucidation of pineal physiology must be based on an understanding of the circadian as well as adrenergic regulation of melatonin production. For more than 50 years it has been known that the endogenous circadian pacemaker is located in the brain (Richter, 1965; Richter, 1967). In many species of animals, this pacemaker is thought to be located in the suprachiasmatic nucleus (SCN) of the hypothalamus (Moore and Eichler, 1972; Stephan and Zucker, 1972; Ibuka and Kawamura, 1975; Rusak, 1977). There may be more than one pacemaker; however, with regard to melatonin production, there is increasing agreement that there is one pacemaker located in the SCN.


Circadian Rhythm Pineal Gland Suprachiasmatic Nucleus Melatonin Secretion Blind Subject 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akerstedt, T., Froberg, J. E., Friberg, Y., and Wetterberg, L., 1979, Melatonin secretion, body temperature and subjective arousal during 64 hours of sleep deprivation, Psychoneuroendocrinology 4: 219–225.PubMedCrossRefGoogle Scholar
  2. Arendt, J., 1979, Radioimmunoassayable melatonin: circulating pat-terns in man and sheep, in: The Pineal Gland of Vertebrates Including Man, Progress in Brain Research, vol. 52, J. Ariens Kappers, and P. Pevet, eds., Elsevier North-Holland Biomedical Press, New York, pp. 249–258.Google Scholar
  3. Arendt, J., 1978, Melatonin assays in body fluids, J. Neural. Transm., Supp1. 13: 265–278.Google Scholar
  4. Aschoff, J., 1960, Exogenous and endogenous components in circadian rhythms, Cold Spring Harbor Symp. Quant. Biol. 25: 11–28.CrossRefGoogle Scholar
  5. Aschoff, J., 1969, Desynchronization and resynchronization of human circadian rhythms, Aerosp. Med. 40: 844–849.Google Scholar
  6. Aschoff, J., 1979, Circadian rhythms: general features and endocrinological aspects, in: Comprehensive Endocrinology, D. T. Krieger, ed., Raven Press, New York, pp. 1–61.Google Scholar
  7. Aschoff, J., 1981, Annual rhythms in man, in: Handbook of Behavioral Neurobiology, Biological Rhythms, vol. 4, J. Aschoff, ed., Plenum Press, New York, pp. 475–487.Google Scholar
  8. Aschoff, J., and Wever, R., 1981, The circadian system of man, in: Handbook of Behavioral Neurobiology, vol. 4, J. Aschoff, ed., Plenum Press, New York, pp. 311–331.Google Scholar
  9. Binkley, S., Muller, G., and Hernandez, T., 1981, Circadian rhythm in pineal N-acetyltransferase activity: phase-shifting by light pulses ( I), J. Neurochem. 37: 798–800.PubMedGoogle Scholar
  10. Czeisler, C. A., Moore-Ede, M. C., Regestein, Q. R., Kisch, E. S., Fang, V. S., and Erblich, E. N., 1979, Episodi 24-hour cortisol secretory rhythm during cardiac surgery, J. Clin. Endocrinol. Metab. 42: 273–283.CrossRefGoogle Scholar
  11. Deguchi, T., and Axelrod, J., 1972, Control of circadian change of serotonin N-acetyltransferase in the pineal organ by the beta-adrenergic receptor, Proc. Natl. Acad. Sci. USA 69: 2547–2550.PubMedCrossRefGoogle Scholar
  12. Groos, G. A., and Mason, R., 1980, The visual properties of rat and cat suprachiasmatic neurones, J. Comp. Physiol. 135: 349–356.CrossRefGoogle Scholar
  13. Halberg, F., 1959, Physiologic 24-hour periodicity; general and procedural considerations with reference to the adrenal cycle, Z. Vitamin Hormon Fermentforschung 10: 225–296.Google Scholar
  14. Herbert, D. C., and Reiter, R. J., 1981, Influence of protein-calorie malnutrition on the circadian rhythm of pineal melatonin in the rat, Soc. Exp. Biol. Med. 166: 360–363.CrossRefGoogle Scholar
  15. Hoffmann, K., Illnerova, H., and Vanecek, J., 1981, Effect of photo-period and of one minute light at night-time on the pineal rhythm on N-acetyltransferase activity in the Djungarian hamster Phodopus syngorus, Biol. Reprod. 24: 551–556.PubMedCrossRefGoogle Scholar
  16. Hollwich, F., 1979, The Influence of Ocular Light Perception on Metabolism in Man and in Animal, Springer-Verlag, New York.CrossRefGoogle Scholar
  17. Ibuka, N., and Kawamura, H., 1975, Loss of circadian rhythm in sleep-wakefulness cycle in the rat by suprachiasmatic nucleus lesions, Brain Res. 96: 76–81.PubMedCrossRefGoogle Scholar
  18. Illnerova, H., 1976, The effects of immobilization of the activity of serotonin N-acetyltransferase in the rat epiphysis, in: Catecholamines and Stress, E. Usdin, R. Kvetnansky, and I. J. Kopin, eds., Pergamon Press, New York, pp. 129–136.Google Scholar
  19. Illnerova, H., and Vanecek, J., 1979, Response of rat pineal serotonin N-acetyltransferase to one min. light pulse at different night times, Brain Res. 167: 431–434.PubMedCrossRefGoogle Scholar
  20. Jimerson, D. C., Lynch, H. J., Post, R. M., Wurtman, R. J., and Bunney, W. E., 1977, Urinary melatonin rhythms during sleep deprivation in depressed patients and normals, Life Sci. 20: 1501–1508.PubMedCrossRefGoogle Scholar
  21. Klein, D. C., and Moore, R. Y., 1979, Pineal N-acetyltransferase and hydroxyindole-0-methyl transferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus, Brain Res. 174: 245–262.PubMedCrossRefGoogle Scholar
  22. Klein, D. C., and Parfitt, A., 1976, A protective role of nerve endings in stress-stimulated increase in pineal N-acetyltransferase activity, in: Catecholamines and Stress, E. Usdin, R. Kvetnansky, and I. J. Kopin, eds., Pergamon Press, New York, pp. 119–128.Google Scholar
  23. Klein, D. C., Reiter, R. J., and Weller, J. L., 1971, Pineal N-acetyltransferase activity in blinded and anosmic rats, Endocrinology 89: 1020–1023.PubMedCrossRefGoogle Scholar
  24. Klein, D. C., and Weller, J., 1970, Indole metabolism in the pineal gland: a circadian rhythm in N-acetyltransferase, Science 169: 1093–1095.PubMedCrossRefGoogle Scholar
  25. Klein, K. E., and Wegmann, H.-M., 1974, The resynchronization of psychomotor performance circadian rhythm after transmeridian flights as a result of flight direction and mode of activity, in: Chronobiology, L. E. Scheving, F. Halberg, and J. E. Pauly, eds., George Thieme Purl, Stuttgart, pp. 564–570.Google Scholar
  26. Lewis, P. R., and Lobban, M. C., 1957, Dissociation of diurnal rhythms in human subjects living on abnormal time routines, Q. J. Exp. Physiol. 42: 371–376.Google Scholar
  27. Lewy, A. J., Wehr, T. A., Goodwin, F. K., Newsome, D. A., and Markey, S. P., 1980, Light suppresses melatonin secretion in humans, Science 210: 1267–1269.PubMedCrossRefGoogle Scholar
  28. Lewy, A. J., Wehr, T. A., Goodwin, F. K., Newsome, D. A., and Rosenthal, N.E., 1981, Manic-depressive patients may be supersensitive to light, Lancet 1: 383–384.PubMedCrossRefGoogle Scholar
  29. Lewy, A. J., Kern, H., Rosenthal, N. E., Wehr, T. A., Newsome, D. A., Gillin, J. C., and Goodwin, F. K., 1982, Bright artificial light treatment of a manic-depressive patient with a sasonal mood cycle, Amer. J. Psych. 139: 1496–1498.Google Scholar
  30. Lewy, A. J., and Neuwelt, E. A., Disappearance of plasma melatonin after surgical removal of a neoplastic pineal gland, in preparation.aGoogle Scholar
  31. Lewy, A. J., and Newsome, D. A., Unusual melatonin secretion in some blind subjects, in preparation.Google Scholar
  32. Lewy, A. J., Wehr, T. A., Gold, P. W., and Goodwin, F. K., Melatonin secretion in manic-depressive patients, in preparation.bGoogle Scholar
  33. Lydic, R. Schoene, W. C., Czeisler, C. A., and Moore-Ede, M. C., 1980, Suprachiasmatic region of the human hypothalamus: homolog to the primate circadian pacemaker? Sleep 2: 355–361.PubMedGoogle Scholar
  34. Lynch, H. J., Eng, J. P., and Wurtman, R. J., 1973, Control of pineal indole biosynthesis by changes in sympathetic tone caused by factors other than environmental lighting, Proc. Natl. Acad. Sci. USA 70: 1704–1708.PubMedCrossRefGoogle Scholar
  35. Lynch, H. J., Jimerson, D. C., Ozaki, Y., Post, R. M., Bunney, W. E., and Wurtman, R. J., 1977, Entrainment of rhythmic melatonin secretion in man to a 12-hour phase shift in the light dark cycle, Life Sci. 23: 1557–1564.CrossRefGoogle Scholar
  36. Lynch, H. J., Rivest, R. W., Ronsheim, P. M., and Wurtman, R. J., 1981, Light intensity and the control of melatonin secretion in rats, Neuroendocrinology 33: 181–185.PubMedCrossRefGoogle Scholar
  37. Minneman, K. P., Lynch, H., and Wurtman, R. J., 1974, Relationship between environmental light intensity and retina-mediated suppression of rat pineal serotonin-N-acetyltransferase, Life Sci. 15: 1791–1796.PubMedCrossRefGoogle Scholar
  38. Moore, R. Y., and Eichler, V. B., 1972, Loss of circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat, Brain Res. 42: 201–206.PubMedCrossRefGoogle Scholar
  39. Moore, R. Y., and Klein, D. C., 1974, Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity, Brain Res. 71: 17–33.PubMedCrossRefGoogle Scholar
  40. Moore, R. Y., 1979, The anatomy of central neural mechanisms regulating endocrine rhythms, in: Comprehensive Endocrinology, D. T. Krieger, ed., Raven Press, New York, pp. 63–87.Google Scholar
  41. Nishino, E., Koizumi, K., and Brooks, C. M., 1976, The role of the suprachiasmatic nuclei of the hypothalamus in the production of circadian rhythms, Brain Res. 112:45–59.PubMedCrossRefGoogle Scholar
  42. Orth, D. P., and Island, D. P., 1969, Light synchronization of the circadian rhythm in plasma cortisol (17–0HCS) concentration in man, J. Clin. Endocrinol. Metab. 29: 479–486.PubMedCrossRefGoogle Scholar
  43. Parfitt, A., and Klein, D. C., 1977, Increase caused by desmethylimipramine in the production of (3H) melatonin by isolated pineal glands, Biochem. Pharmacol. 26: 904–905.PubMedCrossRefGoogle Scholar
  44. Perlow, M. J., Reppert, S. M., Tamarkin, L., Wyatt, R. J., and Klein, D. C., 1980, Photic regulation of the melatonin rhythm: monkey and man are not the same, Brain Res. 182: 211–216.PubMedCrossRefGoogle Scholar
  45. Perlow, M. J., Reppert, S. M., Boyar, R. M., and Klein, D. C., 1980, Daily rhythms in cortisol and melatonin in primate cerebrospinal fluid. Effects of constant light and dark, Neuroendocrinology 32: 193–196.CrossRefGoogle Scholar
  46. Pittendrigh, C. S., 1981, Circadian systems: entrainment, in: Handbook of Behavioral Neurobiology Biological Rhythms, vol. 4, J. Aschoff, ed., Plenum Press, New York, pp. 95–124.Google Scholar
  47. Pohl, C. R., and Gibbs, F. P., 1978, Circadian rhythms in blinded rats: correlation between pineal activity cycles, Am. J. Physiol. 234: 110–114.Google Scholar
  48. Ralph, C. L., Hull, D., Lynch, H. J., and Hedlund, L., 1971, A melatonin rhythm persists in rat pineals in darkness, Endocrinology 89: 1361–1366.PubMedCrossRefGoogle Scholar
  49. Reppert, S. M., Perlow, M. J., Tamarkin, L., Klein, D. C., 1979, A diurnal melatonin rhythm in primate cerebrospinal fluid, Endocrinology 104: 295–301.PubMedCrossRefGoogle Scholar
  50. Reppert, S. M., and Klein, D. C., 1980, Mammalian pineal gland: basic and clinical aspects, in: The Endocrine Functions of the Brain, M. Motta, ed., Raven Press, New York, pp. 327–371.Google Scholar
  51. Richter, C. P., 1965, Biological Clocks in Medicine and Psychiatry, Charles C. Thomas, Publisher, Springfield, Ill.Google Scholar
  52. Richter, C. P., 1967, Sleep and activity: their relation to the 24-hour clock, Proc. Assoc. Res. Ner. Ment. Dis. 45: 8–27.Google Scholar
  53. Rivest, R. W., Lynch, H. J., Ronsheim, P. M., and Wurtman, R. J., 1981, Effect of light intensity on regulation of melatonin secretion and drinking behavior in the albino rat, in: Melatonin–Current Status and Perspectives, Advances in the Biosciences, vol. 29, N. Birau, and W. Schloot, eds., Pergamon Press, Oxford, pp. 119–121.CrossRefGoogle Scholar
  54. Rollag, M. D., and Niswender, G. D. 1976, Radioimmunoassay of serum concentrations of melatonin in sheep exposed to different light regimens, Endocrinology 98: 482–489.PubMedCrossRefGoogle Scholar
  55. Rusak, B., 1977, The role of the suprachiasmatic nuclei in the generation of Circadian rhythm in the golden hamster, Mesocricetus auratus, J. Comp. Physiol. 118: 145–164.CrossRefGoogle Scholar
  56. Schwartz, W. J., and Gainer, H., 1977, Suprachiasmatic nucleus: use of 14C-labeled deoxyglucose uptake as a functional marker, Science 197: 1089–1091.PubMedCrossRefGoogle Scholar
  57. Schwartz, W. J., Davidsen, L. C., and Smith, C. B., 1980, In vivo metabolic activity of a putative circadian oscillator, the rat suprachiasmatic nucleus, J. Comp. Neurol. 189: 157–167.PubMedCrossRefGoogle Scholar
  58. Stephan, F. K., and Zucker, I., 1972, Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions, Proc. Natl. Acad. Sci. USA 69: 1583–1586.PubMedCrossRefGoogle Scholar
  59. Tamarkin, L, Reppert, S., Anderson, A., Pratt, B., Goldman, B. D., and Klein, D. C., 1978, Regulation of pineal melatonin in the Syrian hamster, Pharmacologist 20: 151, 1978.Google Scholar
  60. Thorington, L., 1980, Actinic effects of light and biological implications, Photochem. Photobiol. 32: 117–129.Google Scholar
  61. Vanecek, J., and Illnerova, H., 1979, Changes of a rhythm in rat pineal serotonin N-acetyltransferase following a one-minute light pulse at night, in: The Pineal Gland of Vertebrates Including Man, Progress in Brain Research, J. Ariens Kappers, and P. Pevet, eds., Elsevier North-Holland Biomedical Press, New York, pp. 245–248.Google Scholar
  62. Vaughan, G. M., Allen, J. P. Tullis, U., Silar-Khodr, T. J., De La Pena, A., and Sackman, J. W., 1978, a Overnight plasma profiles of melatonin and certain adenohypophysial hormones in men, J. Clin. Endocrinol. Metab. 47: 566–571.Google Scholar
  63. Vaughan, G. M., McDonald, S. D., Jordan, R. M., Allen, J. P., Bohm Falk, A. L., Abou-Samro, M., and Story, J. L., 1978b Melatonin concentration in human blood and cerebrospinal fluid, J. Clin. Endocrinol. Metab. 47: 220–223.Google Scholar
  64. Vaughan, G. M., Bell, R., and De La Pena, A., 1979,a Nocturnal Plasma melatonin in humans: episodic pattern and influence of light, Neuroscience Letters, 14: 81–84.Google Scholar
  65. Vaughan, G. M., McDonald, S. D., Bell, R., and Stevens, E. A., 1979,b Melatonin, pituitary function and stress in humans, Psychoneuroendocrinology 4: 351–362.Google Scholar
  66. Wehr, T. A., and Goodwin, F. K., 1981, Biological rhythms and psychiatry, in: American Handbook of Psychiatry, vol. 7, 2nd ed., S. Arieti, and H. K. H. Brodie, eds., Basic Books, New York, pp. 46–74.Google Scholar
  67. Weinberg, J., D’Eletto, R. D., Weitzman, E. D., Erblich, S., and Hollander, C. S., 1979, Circulatory melatonin in man: episodic secretion throughout the dark-light cycle, J. Clin. Endocrinol. Metab. 48: 114–118.Google Scholar
  68. Weitzman, E. D., Weinberg, U., D’Eletto, R., Lynch, H. J., Wurtman, R. J., Czeisler, C. A., and Erlich, S., 1978, Studies of the 24 hour rhythm of melatonin in man, J. Neural Transm., Suppl. 13: 325–337.Google Scholar
  69. Weitzman, E. D., Czeisler, C. A., and Moore-Ede, M. C., 1979, Sleep-wake, neuroendocrine and body temperature circadian rhythms under entrained and non-entrained (free-running) conditions in man, in: Biological Rhythms and Their Central Mechanisms, M. Suda, O. Hayaishi, and H. Nakagawa, eds., Elsevier North-Holland, New York, pp. 199–227.Google Scholar
  70. Wetterberg, L., 1978, Melatonin in humans: physiological and clinical studies, J. Neural. Transm. Suppl. 13: 289–310.Google Scholar
  71. Weyer, R. A., 1980, Phase shifts of human circadian rhythms due to shifts of artificial Zeitgebers, Chronobiologia 7: 303.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Alfred J. Lewy
    • 1
  1. 1.Departments of Psychiatry, Pharmacology and OpthalmologyOregon Health Sciences UniversityPortlandUSA

Personalised recommendations