Advertisement

Humoral Interrelations of the Pineal Gland with Lateral Eyes and Orbital Glands

  • W. B. Quay
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 65)

Abstract

Three kinds of general interrelationships are currently accepted concerning the pineal gland, the lateral eyes and the glands of the orbit: (1) The mammalian pineal gland has evolved from eye-like structures (“median or third eyes”) in the pineal complex of lower vertebrates, and its specialized parenchymal cells, the pinealocytes, have residual features of photoreceptor cells (Collin, 1969, 1979; and reviews by Oksche and Kappers in the present volume). (2) The mammalian pineal gland, starting a few days after birth, receives its photic input via the lateral eyes, CNS and sympathetic innervation (Wurtman et al., 1967; Moore et al., 1968; Klein and Moore, 1979). (3) Pineal gland, lateral eye retina, and, to a lesser degree, the Harderian gland of the orbit, share some special biochemical characteristics or capacities. At the present time, the best known and most relevant of these shared characteristics is the presence of the melatonin-forming enzyme, hydroxyindole-O-methyltransferase (HIOMT)(Quay, 1965; Quay et al., 1969; Cardinali and Wurtman, 1972; Nagle et al., 1972a, 1972b, 1974; Cardinali et al., 1974; Pévet et al., 1978; Suzuki and Yagi, 1978; Balemans et al., 1980; Pévet et al., 1980a, 1980b, 1981; Ralph, 1980; Vivien-Roels et al., 1981) and its 5-methoxyindole products (Bubenik et al., 1974, 1976a, 1976b; Pang et al., 1977, 1980; Reiter et al., 1981; Yu et al., 1981).

Keywords

Retinal Pigment Epithelium Pineal Gland Harderian Gland Ocular Chamber Melatonin Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, M. A., 1975, Retinomotor responses, in:“Vision in Fishes,” M. A. Ali, ed., p. 313, Plenum Press, New York.Google Scholar
  2. Ali, M. A., 1981, Adaptations rétiniennes aux habitats, Rev. Can. Biol., 40: 3.PubMedGoogle Scholar
  3. Arey, L. B., 1915, The occurrence and significance of photo-mechanical changes in the vertebrate retina - an historical survey, J. Comp. Neurol., 25: 535.Google Scholar
  4. Arey, L. B., 1916a, The movements in the visual cells and retinal pigment of the lower vertebrates, J. Comp. Neurol., 26: 121.Google Scholar
  5. Arey, L. B., 1916b, The function of the efferent fibers of the optic nerve of fishes, J. Comp. Neurol., 26: 213.Google Scholar
  6. Axelrod, J., and Wurtman, R. J., 1966, The formation, metabolism and some actions of melatonin, a pineal gland substance, in: “Endocrines and the Central Nervous System,” Assoc. for Res. in Nerv. and Ment. Dis., 43: 200, Williams Wilkins, Baltimore.Google Scholar
  7. Baker, P. C., 1969, Melatonin levels in developing Xenopus laevis, Comp. Biochem. Physiol., 28: 1387.Google Scholar
  8. Baker, P. C., and Quay, W. B., 1969, Hydroxytryptamine metabolism in early embryogenesis, and the development of brain and retinal tissues,“ Brain Res., 12: 273.PubMedGoogle Scholar
  9. Baker, P. C., Quay, W. B., and Axelrod, J., 1965, Development of hydroxyindole-O-methyl transferase activity in eye and brain of the amphibian, Xenopus laevis, Life Sci., 4: 1981.Google Scholar
  10. Balemans, M. G. M., Pêvet, P., Legerstee, W. C., and Nevo, E., 1980, Preliminary investigations on melatonin and 5-methoxy-tryptophol synthesis in the pineal, retina and Harderian gland of the Mole Rat and in the pineal of the mouse “Eyeless”, J. Neural Transmission, 49: 247.Google Scholar
  11. Binkley, S., Hryshchyshyn, M., and Reilly, K., 1979, N-Acetyltransferase activity responds to environmental lighting in the eye as well as in the pineal gland, Nature, 281: 479.PubMedGoogle Scholar
  12. Binkley, S., Reilly, K. B., and Hryshchyshyn, M., 1980, N-Acetyltransferase in the chick retina. I. Circadian rhythms controlled by environmental lighting are similar to those in the pineal gland, J. Comp. Physiol., 139: 103.Google Scholar
  13. Brammer, G. L., Yuwiler, A., and Wetterberg, L., 1978, N-Acetyltransferase activity of the rat Harderian gland, Biochim. Biophys. Acta, 526: 93.PubMedGoogle Scholar
  14. Bubenik, G. A., Brown, G. M., and Grota, L. G., 1976a, Differential localization of N-acetylated indolealkylamines in CNS and the Harderian gland using immunohistology, Brain Res., 118: 417.PubMedGoogle Scholar
  15. Bubenik, G. A., Brown, G. M., and Grota, L. J., 1976b, Immunohistochemical localization of melatonin in the rat Harderian gland, J. Histochem. Cytochem., 24: 1173.PubMedGoogle Scholar
  16. Bubenik, G. A., Brown, G. M., Uhler, I., and Grota, L. J., 1974, Immunohistological localization of N-acetylindolealkylamines in pineal gland, retina and cerebellum, Brain Res., 81: 233.PubMedGoogle Scholar
  17. Bubenik, G. A., and Purtill, R. A., 1980, The role of melatonin and dopamine in retinal physiology, Can. J. Physiol. Pharmacol., 58: 1457.PubMedGoogle Scholar
  18. Bubenik, G. A., Purtill, R. A., Brown, G. M., and Grota, L. J., 1978, Melatonin in the retina and the Harderian gland. Ontogeny, diurnal variations and melatonin treatment, Exp. Eye Res., 27: 323.PubMedGoogle Scholar
  19. Buznikov, G. A., 1964, Use of tryptamine derivatives in the study of the role of 5-oxytryptamine (serotonin) during embryonic development of invertebrates, Dokl. Akad. Nauk SSSR, Otd. Biol., 152: 1243.Google Scholar
  20. Buznikov, G. A., Chudakova, I. V., and Zvezdina, N. D., 1964, The role of neurohumors in early embryogenesis. I. Serotonin content of developing sea urchin and loach, J. Embryol. Exp. Morph., 12: 563.PubMedGoogle Scholar
  21. Buznikov, G. A., and Manukhin, B. N., 1961, Serotonin-like substance in the embryogenesis of some gastropod molluscs, Zh. Obshch. Biol., 22: 223.Google Scholar
  22. Buznikov, G. A., Zvezdina, N. D., and Makeeva, R. G., On the possible participation of serotonin and other neurohormones in the regulation of protein biosynthesis (Experiments on sea urchin eggs), Dokl. Akad. Nauk SSSR, Otd. Biol., 166: 1252.Google Scholar
  23. Cardinali, D. P., 1980, Molecular biology of melatonin: Assessment of the “microtubule hypothesis of melatonin action,” in:“Melatonin: Current Status and Perspectives,” N. Birau and W. Schloot, eds., p. 247, Pergamon Press, Oxford and New York.Google Scholar
  24. Cardinali, D. P., Faigón, M. R., Scacchi, P., and Moguilevsky, J., 1979, Failure of melatonin to increase serum prolactin levels in ovariectomized rats subjected to superior cervical ganglionectomy or pinealectomy, J. Endocr., 82: 315.PubMedGoogle Scholar
  25. Cardinali, D. P., Nagle, C. A., and Rosner, J. M., 1974, Periodic changes in rat retinal and pineal melatonin synthesis, Acta Physiol. Latino. Amer., 24: 91.Google Scholar
  26. Cardinali, D. P., Vacas, M. I., and Gejman, P. V., 1981, The sympathetic superior cervical ganglia as peripheral neuroendocrine centers, J. Neural Transmission, 52: 1Google Scholar
  27. Cardinali, D. P., and Wurtman, R. J., 1972, Hydroxyindole-O-methyl transferases in rat pineal, retina and Harderian gland, Endocrinology, 91: 217.Google Scholar
  28. Clabough, J. W., and Norvell, J. E., 1973, Effects of castration, blinding, and the pineal gland on the Harderian glands of the male Golden Hamster, Neuroendocrinology, 3: 44.Google Scholar
  29. Collin, J.-P., 1969, Contribution à l’étude de l’organe pinéal. De l’épiphyse sensorielle à la glande pinéale: Modalités de transformation et implications fonctionelles, Ann. Sta. Biol. Besseen-Chandesse, 1: 1.Google Scholar
  30. Collin, J.-P., Recent advances in pineal cytochemistry. Evidence of the production of indoleamines and proteinaceous substances by rudimentary photoreceptor cells and pinealocytes of Amniota, Prog. Brain Res., 52: 271.Google Scholar
  31. Currie, J. R., Hollyfield, J. G., and Rayborn, M. E., 1978, Rod outer segments elongate in constant light: Darkness is required for normal shedding, Vision Res., 18: 995.PubMedGoogle Scholar
  32. Decker, J. F., and Quay, W. B., in press, Stimulatory effects of melatonin on ependymal epithelium of choroid plexuses in Golden Hamsters, J. Neural Transmission., 18:995.Google Scholar
  33. Detwiler, S. R., 1943, “Vertebrate Photoreceptors,” Macmillan, New York.Google Scholar
  34. Venecia, G., and Davis, M. G., 1963, Diurnal variation of intraocular pressure in the normal eye, Arch. Ophthal., 69: 752.Google Scholar
  35. Easter, S. S., Jr., and Macy, A., 1978, Local control of retinomotor activity in the fish retina, Vision Res., 18: 937.PubMedGoogle Scholar
  36. Ferrario, V. F., Bianchi, R., Giunta, G., and Roveda, L., 1982, Circadian rhythm in human intraocular pressure, Chronobiologia, 9: 33.PubMedGoogle Scholar
  37. Follmann, P., 1977, Distribution of normal intraocular pressure. Trans. Ophthal. Soc. U. K., 97: 683.Google Scholar
  38. Gern, W. A., Owens, D. W., and Ralph, C. L., 1978, The synthesis of melatonin by the trout retina, J. Exp. Zool., 206: 263.Google Scholar
  39. Goldman, A. I., 1982, The pineal gland does not mediate phase shifts in the disc shedding rhythm of the rat retina, Invest. Ophthal. Visual Sci., 22: 111.Google Scholar
  40. Goldman, A. I., Teirstein, P. S., and O’Brien, P. J., 1980, The role of ambient lighting in circadian disc shedding in the rod outer segment of the rat retina, Invest. Ophthal. Visual Sci., 19: 1257.Google Scholar
  41. Hamm, H. E., and Menaker, M., 1980, Retinal rhythms in chicks: Circadian variation in melatonin and serotonin N-acetyltransferase activity, Proc. Natl. Acad. Sci. USA, 77: 4998.PubMedGoogle Scholar
  42. Hamm, H. E., and Menaker, M., 1981, Pineal and retinal serotonin Nacetyltransferase activity: Modulation by phosphate, J. Neurochem., 37: 1567.PubMedGoogle Scholar
  43. Harlow, H. J., Phillips, J. A., and Ralph, C. L., 1981, Day-night rhythm in plasma melatonin in a mammal lacking a distinct pineal gland, the Nine-banded Armadillo, Gen. Comp. Endocrinol., 45: 212.PubMedGoogle Scholar
  44. Job, I., and Kahân, A., 1975, The porphyrin content of Harderian glands of rats and the melatonin-melanocyte stimulating hormone-system, Endokrinologie, 65: 308.Google Scholar
  45. Joss, J. M. P., 1978, A rhythm in hydroxyindole-O-methyltransferase (HIOMT) activity in the scincid lizard, Lampropholas guichenoti, Gen. Comp. Endocrinol., 36: 521.PubMedGoogle Scholar
  46. Kalsow, C. M., and Wacker, W. B., 1978, Pineal gland involvement in retina-induced experimental allergic uveitis, Invest. Ophthal. Visual Sci., 17: 774.Google Scholar
  47. Kittrell, E. M. W., and Thiessen, D. D., 1981, Does the removal of the Harderian gland affect the physiology of the Mongolian Gerbil (Meriones unguiculatus)?, Physiol. Psychol., 9: 299.Google Scholar
  48. Klein, D. C., and Moore, R. Y., 1979, Pineal N-acetyltransferase and hydroxyindole-O-methyltransferase: Control by the retinohypothalamic tract and the suprachiasmatic nucleus, Brain Res., 174: 245.PubMedGoogle Scholar
  49. Kline, L. W., and Pickering, S. G., 1975, An efferent effect on a rhythmic response in the frog retina, Can. J. Physiol. Pharmacol., 53: 816.PubMedGoogle Scholar
  50. Kostellow, A. B., and Morrill, G. A., 1971, Tryptophan induction of the serotonin and kynurenine pathways in the early amphibian embryo, Nature New Biol., 231: 119.PubMedGoogle Scholar
  51. Lai, Y.-L., Lug, R., Yao, P. C., Hayasaka, S., and Hayasaka, I., 1980, Studies of the pathogenic mechanisms of light on rat retina, Acta Anat., 107: 407.PubMedGoogle Scholar
  52. Lanum, J., 1978, The damaging effects of light on the retina. Empirical findings, theoretical and practical implications, Surv. Ophthal., 22: 221.Google Scholar
  53. LaVail, M. M., 1976a, Rod outer segment disc shedding in relation to cyclic lighting, Exp. Eye Res., 23: 277.PubMedGoogle Scholar
  54. LaVail, M. M., 1976b, Rod outer segment disc shedding in rat retina: Relationship to cyclic lighting, Science, 194: 1071.PubMedGoogle Scholar
  55. Levey, A. J., Tetsuo, M., Markey, S. P., Goodwin, F. K., and Kopin, I. J., 1980, Pinealectomy abolishes plasma melatonin in the rat, J. Clin. Endocrinol. Metab., 50: 204.Google Scholar
  56. Lin, W.-L., and Nadakavukaren, M. J., 1981, Harderian gland lipids of male and female Golden Hamsters, Comp. Biochem. Physiol., 70: 627.Google Scholar
  57. Meyer, A. C., Wassermann, W., Meyer, B. J., Joubert, W. S., Roux, S., and Biagio, R., 1981, Melatonin rhythm in the Chacma Baboon (Papio ursinus) and the effect of pinealectomy and superior cervical ganglionectomy on the rhythm. South African J. Sci., 77: 39.Google Scholar
  58. Moore, R. Y., Heller, A., Bhatnager, R. K., Wurtman, R. J., and Axelrod, J., 1968, Central control of the pineal gland: Visual pathways, Arch. Neurol., 18: 208.PubMedGoogle Scholar
  59. Nagle, C. A., Cardinali, D. P., and Rosner, J. M., 1972, Light regulation of rat retinal hydroxyindole-O-methyl transferase (HIOMT) activity, Endocrinology, 91: 423.PubMedGoogle Scholar
  60. Nagle, C. A., Cardinali, D. P., and Rosner, J. M., 1973, Retinal and pineal hydroxyindole-O-methyl transferases in the rat: Changes following cervical sympathectomy, pinealectomy or blinding, Endocrinology, 92: 1560.PubMedGoogle Scholar
  61. Nagle, C. A., Cardinali, D. P., and Rosner, J. M., 1974, Effects of castration and testosterone administration on pineal and retinal hydroxyindole-O-methyl transferases of male rats, Neuroendocrinology, 14: 14.PubMedGoogle Scholar
  62. O’Steen, W. K., 1970, Retinal and optic nerve serotonin and retinal degeneration as influenced by photoperiod, Exp. Neurol., 27: 194.PubMedGoogle Scholar
  63. O’Steen, W. K., Anderson, K. V., and Shear, C. R., 1974, Photoreceptor degeneration in albino rats: Dependency on age, Invest. Ophthal., 13: 334.PubMedGoogle Scholar
  64. O’Steen, W. K., Kraeer, S. L., and Shear, C. R., 1978, Extraocular muscle and Harderian gland degeneration and regeneration after exposure of rats to continuous fluorescent illumination, Invest. Ophthal. Visual Sci., 17: 847.Google Scholar
  65. O’Steen, W. K., Shear, C. R., and Anderson, K. V., 1972, Retinal damage after prolonged exposure to visible light. A light and electron microscopic study, Am. J. Anat., 134: 5.PubMedGoogle Scholar
  66. Pang, S. F., Brown, G. M., Grota, L. J., Chambers, J. W., and Rodman, R. L., 1977, Determination of N-acetylserotonin and melatonin activities in the pineal gland, retina, Harderian gland, brain and serum of rats and chickens, Neuroendocrinology, 23: 1.PubMedGoogle Scholar
  67. Pang, S. F., and Ralph, C. L., 1975, Pineal and serum melatonin at midday and midnight following pinealectomy or castration in male rats, J. Exp. Zool., 193: 275.PubMedGoogle Scholar
  68. Pang, S. F., and Yew, D. T., 1979, Pigment aggregation by melatonin in the retinal pigment epithelium and choroid of Guinea-pigs, Cavia porcellus, Experientia, 35: 231.PubMedGoogle Scholar
  69. Pang, S. F., Ye-r, D. T., and Tsui, H. W., 1978, Photomechanical changes in the retina and choroid of Guinea Pigs, Cavia porcellus, Neuroscience Letters, 10: 221.PubMedGoogle Scholar
  70. Pang, S. F., Yu, H. S., Suen, H. C., and Brown, G. M., 1980, Melatonin in the retina of rats: A diurnal rhythm, J. Endocr., 87: 89.PubMedGoogle Scholar
  71. Pang, S. F., Yu, H. S., and Tang, P. L., 1981, A diurnal rhythm of N-acetylserotonin in the retina of rats, Neuroscience Letters, 21: 197.PubMedGoogle Scholar
  72. Panke, E. S., Reiter, R. J., and Rollag, M. D., 1979, Effect of removal of the Harderian glands on pineal melatonin concentrations in the Syrian Hamster, Experientia, 35: 1405.PubMedGoogle Scholar
  73. Pévet, P., Balemans, M. G. M., Bary, F. A. M., and Noordegraaf, E. M., 1978, The pineal gland of the Mole (Talpa europaea, L.). V) Activity of hydroxyindole-O-methyl transferase (HIOMT) in the formation of melatonin/5-methoxytryptophol in the eyes and the pineal gland, Ann. Biol. Anim. Bioch. Biophys., 18: 259.Google Scholar
  74. Pévet, P., Balemans, M. G. M., Legerstee, W. C., and Vivien-Roels, B., 1980a, Circadian rhythmicity in the activity of HIOMT in the formation of melatonin and of 5-methoxytryptophol in the retina, Harderian gland and pineal of the male hamster, in: “Melatonin: Current Status and Perspectives,” N. Birau and W. Schloot, eds., p. 201, Pergamon Press, Oxford and New York.Google Scholar
  75. Pévet, P., Balemans, M. G. M., Legerstee, W. C., and Vivien-Roels, B., 1980b, Circadian rhythmicity of the activity of hydroxyindole-O-methyl transferase (HIOMT) in the formation of melatonin and 5-methoxytryptophol in the pineal, retina, and Harderian gland of the Golden Hamster, J. Neural Transmission, 49: 229.Google Scholar
  76. Pévet, P., Balemans, M. G. M., and de Reuver, G. F., 1981, The pineal gland of the Mole (Talpa europaea L). VII. Activity of hydroxyindole-0-methyltransferase (HIOMT) in the formation of 5-methoxytryptophan, 5-methoxytryptamine, 5-methoxyindole-3-acetic acid, 5-methoxytryptophol and melatonin in the eyes and the pineal gland, J. Neural Transmission, 51: 271.Google Scholar
  77. Poffenbarger, M., and Fuller, G. M., 1976, Is melatonin a microtubule inhibitor?, Exp. Cell Res., 103: 135.PubMedGoogle Scholar
  78. Pomerantz, G., and Reiter, R. J., 1974, Influence of intraocularlyinjected pineal indoles on PMS-induced ovulation in immature rats, Int. J. Fertil., 19: 117.Google Scholar
  79. Pomerantz, G., and Sorrentino, S., Jr., 1973, The influence of melatonin administered subcutaneously, intravenously, or intraocularly upon ovulation in the PMS-treated immature rat, Neuroendocrinology, 12: 354.PubMedGoogle Scholar
  80. Quay, W. B., 1965, Retinal and pineal hydroxyindole-O-methyl transferase activity in vertebrates, Life Sci., 4: 983.PubMedGoogle Scholar
  81. Quay, W. B., 1968, Comparative physiology of serotonin and melatonin, Adv. Pharmacol., 6: 283.PubMedGoogle Scholar
  82. Quay, W. B., 1974, “Pineal Chemistry in Cellular and Physiological Mechanisms,” Charles C Thomas, Springfield.Google Scholar
  83. Quay, W. B., and McLeod, R. W., 1968, Melatonin and photic stimulation of cone contraction in the retina of larval Xenopus Zaevis, Anat. Rec., 160: 491.Google Scholar
  84. Quay, W. B., Payer, A. F., Parkening, T. A., Banerji, T. K., and Collins, T. J., 1982, Melatonin’s inhibition of pituitary, adrenal, testicular and accessory gland growth in male Golden Hamsters: Pineal dependence and organ differences with shielding and intracranial surgery, J. Neural Transmission, 53: 59.Google Scholar
  85. Quay, W. B., Smart, L. I., and Hafeez, M. A., 1969, Substrate specificity and tissue localization of acetylserotonin methyltransferase in eyes of trout (Salmo gairdneri), Comp. Biochem. Physiol., 28: 947.Google Scholar
  86. Ralph, C. L., 1980, Melatonin production by extra-pineal tissues, in: “Melatonin: Current Status and Perspectives,” N. Birau and W. Schloot, eds., p. 35, Pergamon Press, Oxford and New York.Google Scholar
  87. Reiter, R. J., 1973, Comparative effects of continual lighting and pinealectomy on the eyes, the Harderian glands and reproduction in pigmented and albino rats, Comp. Biochem. Physiol., 44: 503.Google Scholar
  88. Reiter, R. J., Blask, D. E., Johnson, L. Y., Rudeen, P. K., Vaughan, M. K., and Waring, P. J., 1976, Melatonin inhibition of reproduction in the male hamster: Its dependency upon time of day of administration and on an intact and sympathetically innervated pineal gland, Neuroendocrinology, 22: 107.PubMedGoogle Scholar
  89. Reiter, R. J., and Klein, D. C., 1971, Observations on the pineal gland, the Harderian glands, the retina, and the reproductive organs of adult female rats exposed to continuous light, J. Endocr., 51: 117.PubMedGoogle Scholar
  90. Reiter, R. J., Richardson, B. A., and Hurlbut, E. C., 1981, Pineal, retinal and Harderian gland melatonin in a diurnal species, the Richardson’s Ground Squirrel (Spermophilus richardsonii), Neuroscience Letters, 22: 285.Google Scholar
  91. Repérant, J., Vesselkin, N. P., Rio, J. P., Ermakova, T. V., Miceli, D., Peyrichoux, and Weidner, C., 1981, La voie visuelle centrifuge n’existe-t-elle que chez les oiseaux?, Rev. Can. Biol., 40: 29.Google Scholar
  92. Sackman, J. W., Little, J. C., Rudeen, P. K., Waring, P. J., and Reiter, R. J., 1977, The effects of pineal indoles given late in the light period on reproductive organs and pituitary prolactin levels in male Golden Hamsters, Hormone Res., 8: 84.PubMedGoogle Scholar
  93. Sagar, S. M., Martin, J. B., and Reppert, S. M., 1982, Circadian rhythm of melatonin content in chick retina, Endocrine Soc. Prog. and Abstracts, 990: 88.Google Scholar
  94. Sakai, T., 1981, The mammalian Harderian gland: Morphology, biochem- istry, function and phylogeny, Arch. Histol. Japon., 44: 299.Google Scholar
  95. Saxén, L., 1954, The development of the visual cells, embryological and physiological investigations on Amphibia, Ann. Acad. Sci. Fenn., Ser. A, IV. Biol., 23: 1.Google Scholar
  96. Semm, P., Demaine, C., and Vollrath, L., 1980, The effects of microelectrophoretically applied melatonin, putative transmitters, thyroxine and sex hormones on the electrical activity of pineal cell in the Guinea-pig, in: “Melatonin: Current Status and Perspectives,” N. Birau and W. Schloot, eds., p. 129, Pergamon Press, Oxford and New York.Google Scholar
  97. Shirama, K., Furuya, T., Takeo, Y., Shimizu, K., and Maekawa, K., 1981, Influences of some endocrine glands and of hormone replacement on the porphyrins of the Harderian glands of mice, J. Endocr., 91: 305.PubMedGoogle Scholar
  98. Suzuki, O., and Yagi, K., 1978, A nonisotopic assay for acetylserotonin methyltransferase, Analyt. Biochem., 88: 580.PubMedGoogle Scholar
  99. Tamarkin, L., Hollister, C. W., Lefebvre, N. G., and Goldman, B. D., 1977, Melatonin induction of gonadal quiescence in pinealectomized Syrian Hamsters, Science, 198: 953.PubMedGoogle Scholar
  100. Teirstein, P. S., Goldman, A. I., and O’Brien, P. J., 1980, Evidence for both local and central regulation of rat rod outer segment disc shedding, Invest. Ophthal. Visual Sci., 19: 1268.Google Scholar
  101. Tetsuo, M., Perlow, M. J., Mishkin, M., and Markey, S. P., 1982, Light exposure reduces and pinealectomy virtually stops urinary excretion of 6-hydroxymelatonin by Rhesus Monkeys, Endocrinology, 110: 997.PubMedGoogle Scholar
  102. Thiessen, D. D., 1977, Thermoenergetics and the evolution of pheromone communication, Prog. Psychobiol. Physiol. Psychol., 7: 91.Google Scholar
  103. Thiessen, D. D., Clancy, A., and Goodwin, M., 1976, Harderian gland pheromone in the Mongolian Gerbil Meriones unguiculatus. J. Chem. Ecol., 2: 231.Google Scholar
  104. Thiessen’, D. D., Graham, M., Perkins, J., and Marcks, S., 1977, Temperature regulation and social grooming in the Mongolian Gerbil (Meriones unguiculatus), Behay. Biol., 19: 279.Google Scholar
  105. Turek, F. W., 1977, Antigonadal effect of melatonin in pinealectomized and intact male hamsters, Proc. Soc. Exp. Biol. Med., 155: 31.PubMedGoogle Scholar
  106. Vivien-Roels, B., Pévet, P., Dubois, M. P., Arendt, J., and Brown, G. M., 1981, Immunohistochemical evidence for the presence of melatonin in the pineal gland, the retina and the Harderian gland, Cell Tissue Res., 217: 105.PubMedGoogle Scholar
  107. Welsh, J. H., and Osborn, C. M., 1937, Diurnal changes in the retina of the catfish, Ameiurus nebulosus. J. Comp. Neurol., 66: 349.Google Scholar
  108. Wetterberg, L., Geller, E., and Yuwiler, A., 1970a, Harderian gland: An extraretinal photoreceptor influencing the pineal gland in neonatal rats, Science, 167: 884.PubMedGoogle Scholar
  109. Wetterberg, L., Yuwiler, A., Ulrich, R., Geller, E., and Wallace, R., 1970b, Harderian gland: Influence on pineal hydroxyindole-0methyltransferase activity in neonatal rats, Science, 170: 194.PubMedGoogle Scholar
  110. Worthen, D. M., 1978, Intraocular pressure and its diurnal variation, in: “Glaucoma. Conceptions of a Disease,” K. Heilmann and K. T. Richardson, eds., p. 54, Georg Thieme Publ., Stuttgart.Google Scholar
  111. Wurtman, R. J., Axelrod, J., and Potter, L. T., 1964, The uptake of H3 - melatonin in endocrine and nervous tissues and the effects of constant light exposure, J. Pharmacol., 143: 314.Google Scholar
  112. Wurtman, R. J., Axelrod, J., Chu, E. W., Heller, A., and Moore, R. Y., 1967, Medial forebrain lesions: Blockade of effects of light on rat gonads and pineal, Endocrinology, 81: 509.PubMedGoogle Scholar
  113. Yu, H. S., Pang, S. F., and Tang, P. L., 1981a, Increase in the level of retinal melatonin and persistence of its diurnal rhythm in rats after pinealectomy, J. Endocr., 91: 477.PubMedGoogle Scholar
  114. Yu, H. S., Pang, S. F., Tang, P. L., and Brown, G. M., 1981, Persistence of circadian rhytms of melatonin and N-acetylserotonin in the serum of rats after pinealectomy, Neuroendocrinology, 32: 262.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • W. B. Quay
    • 1
  1. 1.Neuroendocrine Laboratory, Department of AnatomyUniversity of Texas Medical BranchGalvestonUSA

Personalised recommendations