Advertisement

Alterations of Surface Properties by Macrophage Activation: Expression of Receptors for Fc and Mannose-Terminal Glycoproteins and Differentiation Antigens

  • R. Alan
  • B. Ezekowitz
  • S. Gordon
Part of the Contemporary Topics in Immunobiology book series (CTI, volume 13)

Abstract

The original definition of the activated macrophage described the altered function of these cells in antimicrobial activity and cell-mediated immunity (Mackaness, 1964), yet when the role of the macrophage in mammalian physiology and pathology is considered it is apparent that this definition may be too restricted. Inflammation, tissue remodeling, degradation, and turnover of normal body constituents and antitumor resistance could be more general expressions of enhanced macrophage functions. With these different roles in mind, it is necessary to consider the properties that distinguish acquired states of activation from the nonactivated or resident state.

Keywords

Peritoneal Macrophage Macrophage Activation Phorbol Myristic Acetate Purify Protein Derivative Mouse Peritoneal Macrophage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adlam, C., Broughton, E. S., and Scott, M. T., 1972, Enhanced resistance of mice to infection with bacteria following pretreatment with Corynebacterium parvurn, Nature 235: 219–220.CrossRefGoogle Scholar
  2. Ault, K. A., and Springer, T. A., 1981, Cross-reaction of a rat-antimouse phagocyte specific monoclonal antibody (anti-Mac-1) with human monocytes and natural killer cells, J. Immunol 126: 359–364.PubMedGoogle Scholar
  3. Austyn, J. A., and Gordon, S., 1981, F4/80, a monoclonal antibody directed specifically against the mouse macrophage, Eur. J. Immunol 11: 805–815.PubMedCrossRefGoogle Scholar
  4. Beller, D., Springer, T. A., and Schreiber, R. D., 1982, Anti-Mac-1 selectively inhibits the mouse and human by the type three complement receptor, J. Exp. Med 156: 1000 1009.Google Scholar
  5. Berton, G. and Gordon, S., 1983, Superoxide release by peritoneal and bone-marrow derived mouse macrophages, modulation by adherence and cell activation, Immunol. 49: 693704.Google Scholar
  6. Cheers, C., and Waller, R., 1975, Activated macrophages in congenitally athymic “nude” mice and in lethally irradiated mice, J. Immunol 115: 844–847.PubMedGoogle Scholar
  7. Cummings, N. P., Pabst, M. J., and Johnston, R. B. Jr., 1980, Activation of macrophages for enhanced release of superoxide anion and greater killing of Candida albicans by injection of muramyl dipeptide, J. Exp. Med. 152: 1659–1669.PubMedCrossRefGoogle Scholar
  8. Cutler, J. El and Poor, A. H., 1981, Effect of mouse phagocytes on Candida albicans in in vivo chambers, Infect. Immun 31: 1110–1116.PubMedGoogle Scholar
  9. Diamond, B., and Yelton, D., 1981, A new Fc receptor on mouse macrophages binding IgG3, J. Exp. Med 153: 514–519.PubMedCrossRefGoogle Scholar
  10. Edelson, P. J., and Cohn, Z. A., 1976, 5’ nucleotidase activity of mouse peritoneal macrophages. 1. Synthesis and degradation in resident and inflammatory populations, J. Exp. Med 144: 1581–1595.Google Scholar
  11. Edelson, P. J., Zweibel, R., and Cohn, Z. A., 1975, Pinocytic rate of activated macrophages, J. Exp. Med 142: 1150–1164.PubMedCrossRefGoogle Scholar
  12. Ezekowitz, R. A. B., and Gordon, S., 1982, Down regulation of mannosyl-receptor-mediated endocytosis and antigen F4/80 in BCG-activated mouse macrophages. Role of T lymphocytes and lymphokines, J. Exp. Med 155: 1623–1637.PubMedCrossRefGoogle Scholar
  13. Ezekowitz, R. A. B., Austyn, J. A., Stahl, P., and Gordon, S., 1981, Surface properties of Bacillus Calmette-Guérin-activated mouse macrophages. Reduced expression of mannosespecific endocytosis, Fc receptors and antigen F4/80 accompanies induction of Ia, J. Exp. Med 154: 60–76.PubMedCrossRefGoogle Scholar
  14. Ezekowitz, R. A. B., Bampton, M., and Gordon, S., 1983, Macrophage activation selectively enhances expression of Fc receptors for IgG2a, J. Exp. Med 157: 807–812.PubMedCrossRefGoogle Scholar
  15. Ghaffar, A., 1980, The activation of macrophages by Corynebacterium parvum: Effects of anticomplementary agents cobra venom factor and sodium cyanate, Res. J. Reticuloendothel. Soc 27: 327–332.Google Scholar
  16. Gordon, S., and Cohn, Z. A., 1978, Bacille Calmette-Guérin infection in the mouse. Regulation of macrophage plasminogen activator by T lymphocytes and specific antigen, J. Exp. Med 147: 1175–1188.PubMedCrossRefGoogle Scholar
  17. Gordon, S., and Werb, Z., 1975, Elastase secretion by stimulated macrophages. Characterization and regulation, J. Exp. Med 142: 361–377.PubMedCrossRefGoogle Scholar
  18. Gordon, S., Todd, J,and Cohn, Z. A., 1974, In vitro synthesis and secretion of lysozyme by mononuclear phagocytes, J. Exp. Med 139:1228–1248.Google Scholar
  19. Grosskinsky, M., Ezekowitz, R. A. B., Berton, G., Gordon, S., and Askonas, B., 1983, Macro- phage activation in murine African Trypanosomiasis, Infect. Immun 39: 1080–1086.PubMedGoogle Scholar
  20. Herlyn, D., and Koprowski, H., 1982, IgG2a monoclonal antibodies inhibit human tumor growth through interaction with effector cells, Proc. Natl. Acad. Sci. USA 79: 47614765.Google Scholar
  21. Heusser, C. H., Anderson, C. L., and Grey, H. M., 1977, Receptors for IgG: Subclass specificity of receptors on different mouse cell types and the definition of two distinct receptors on a macrophage cell line, J. Exp. Med 145: 1316–1327.PubMedCrossRefGoogle Scholar
  22. Hirsch, S., Austyn, J. M., and Gordon, S., 1981, Expression of macrophage specific antigen F4/80 during differentiation of mouse bone marrow cells in culture, J. Exp. Med 152: 713–725.CrossRefGoogle Scholar
  23. Huinig, T., and Bevan, M. J., 1980, Specificity of cytotoxic T cells from athymic mice, J. Exp. Med 152: 688–702.CrossRefGoogle Scholar
  24. Hume, D. A., Robinson, A. P., MacPherson, S. S., and Gordon, S., 1983, Mononuclear phagocyte system of mouse defined by immunohistochemical localization of antigen F4/80, J. Exp. Med. 158: 1522–1536.PubMedCrossRefGoogle Scholar
  25. Imber, M. J, Pizzo, S. V., Johnson, W. J., and Adams, D. D., 1982, Selective diminution of the binding of mannose by murine macrophages in the late stages of activation, J. Biol. Chem 257: 5129–5135.Google Scholar
  26. Johnston, R. B. Jr., Godzik, C. A., and Cohn, Z. A., 1978, Increased superoxide anion production by immunologically activated and chemically elicited macrophages, J. Exp. Med 148: 115–127.PubMedCrossRefGoogle Scholar
  27. Kaplan, G., Unkeless, J. C., and Cohn, Z. A., 1979, Insertion and turnover of macrophage plasma membrane proteins, Proc. Natl. Acad. Sci. USA 76: 3824–3828.PubMedCrossRefGoogle Scholar
  28. Kossard, S., and Nelson, D. S., 1968, Studies on cytophilic antibodies IV. The effects of proteolytic enzymes (trypsin and papain) on the attachment to macrophages of cytophilic antibodies, Aust. J. Exp. Biot Med. Sci 46: 63–69.CrossRefGoogle Scholar
  29. Kurzinger, K., Ho, M. K., Springer, T. A., 1982, Structural homology of a macrophage differentiation antigen and an antigen involved in T-cell-mediated killing, Nature 296: 6686 70.Google Scholar
  30. Lane, B. C., and Cooper, M. S., 1982, Fc receptors of mouse macrophage cell lines. 1. Distinct proteins mediate the IgG subclass-specific Fc binding activities of macrophages, J. Immunol 128: 1819–1824.PubMedGoogle Scholar
  31. Mackaness, G. B., 1964, The immunological basis of acquired cellular resistance, J. Exp. Med 120: 105–112.PubMedCrossRefGoogle Scholar
  32. McMaster, W. R., and Williams, A. F., 1979, Monoclonal antibodies to la antigens from rat thymus. Cross reactions with mouse and human and use in purification of Rat Ia glycoproteins, Immunol. Rev 47: 117–131.PubMedCrossRefGoogle Scholar
  33. Mason, D., Dallman, M., and Barclay, N., 1981, Graft-versus-host disease induces expression of la antigen in rat epidermal cells and gut epithelium, Nature 293: 150–151.PubMedCrossRefGoogle Scholar
  34. Matthews, I J., Collins, J. J., Roloson, C. J., Thiel, H. J., and Bolognesi, D. P., 1981, Immunological control of the ascites form of murine adenocarcinoma, J. Immunol 126: 2332–2336.Google Scholar
  35. Mellman, I Unkeless, J. C., Steinman, R., and Cohn, Z. A., 1981, Internalisation and fate of Fc receptors during endocytosis, J. Cell Biol 91:124a.Google Scholar
  36. Meltzer, M., 1981, Tumor cytotoxicity by lumphokine-activated macrophages: Development of macrophage tumoricidal activity requires a sequence of reactions, Lymphokines 3: 319–329.Google Scholar
  37. Mich!, J., Pieczonka, M. M., Unkeless, J. C., and Silverstein, S. C., 1980, Effects of immobilized immune complexes on Fc-and complement-receptor function in resident and thioglycollate-elicited mouse peritoneal macrophages, J. Exp. Med 150: 607.CrossRefGoogle Scholar
  38. Nathan, C. F., and Cohn, Z. A., 1980, Role of oxygen-dependent mechanisms in antibody- induced lysis of tumor cells by activated macrophages, J. Exp. Med 152: 198–208.PubMedCrossRefGoogle Scholar
  39. Nathan, C. F., and Root, R. K., 1977, Hydrogen peroxide release from mouse peritoneal macrophages. Dependence on sequential activation and triggering, J. Exp. Med 146: 1648–1662.PubMedCrossRefGoogle Scholar
  40. Nathan, C. F., Silverstein, S. C., Brukner, L. H. and Cohn, Z. A., 1979, Extracellular cytolysis by activated macrophages and granulocytes. 11. Hydrogen peroxide as a mediator of cytotoxicity, J. Exp. Med 149: 100–113.PubMedCrossRefGoogle Scholar
  41. Nussensweig, M. C., Steinman, R. M., Gutchman, B., and Cohn, Z. A., 1980, Dendritic cells are accessory cells for the development of anti-trimetrophenyl cytotoxic T lymphocytes, J. Exp. Med 152: 1070–1084.CrossRefGoogle Scholar
  42. Old, L. J., Benacerraf, B., Clarke, D. A., Carswell, C. E., and Stockart, E., 1961, The role of the reticuloendothelial system in host reaction in neoplasia, Cancer Res. 21: 1281–1291.PubMedGoogle Scholar
  43. Pabst, M. J. and Johnson, R. B., Jr., 1980, Increased production of superoxide by macro- phages exposed in vitro to muramyl-dipeptide or endotoxin, J. Exp. Med 151: 101–110.PubMedCrossRefGoogle Scholar
  44. Parant, M., Parant, F., and Chedid, L., 1978, Enhancement of the neonate’s nonspecific immunity to Klebsiella infection by muramyl dipeptide, a synthetic immunoadjuvant, Proc. Natl. Acad. Sci. USA 75: 23395–23399.CrossRefGoogle Scholar
  45. Paulowski, N. A., Scott, W. A., Andreach, M., and Cohn, Z. A., 1982, Uptake and metabolism of monohydroxy-eicosatetraenoic acids by macrophages, J. Exp. Med 135: 1653–1664.CrossRefGoogle Scholar
  46. Rabinovitch, M., Manejias, R. E., Russo, M., and Abbey, E. E., 1977, Increased spreading of macrophages from mice treated with interferon inducers, Cell. Immunol 29: 86–95.PubMedCrossRefGoogle Scholar
  47. Ranges, G. E., Gildstein, S., Boyse, E. A., and Schield, M. P., 1982, T cell development in normal and thymopoietin-treated nude mice, J. Exp. Med 156: 1057–1060.PubMedCrossRefGoogle Scholar
  48. Remold-O’Donnell, R. E., and Lewandrowski, K., 1982, Decrease of the major surface glycoprotein gp160 in activated macrophages. Cell Immunol. 70: 85–93.CrossRefGoogle Scholar
  49. Stahl, P., Schlesinger, P. H., Sigardson, E., Rodman, J. S., and Lee, Y. C., 1980, Receptor mediated pinocytosis of mannose glycoconjugates by macrophages. Characterization and evidence for receptor recycling, Cell 19: 207–211.PubMedCrossRefGoogle Scholar
  50. Stahl, P., and Gordon, S., 1982, Expression of a mannose-fucosyl receptor for endocytosis on cultured primary macrophages and their hybrids, J. Cell Biol 93: 49–62.PubMedCrossRefGoogle Scholar
  51. Steeg, P. S., Moore, R. N., and Oppenheim, J. J., 1980, Regulation of murine macrophage la antigen expression by products of activated spleen cells, J. Exp. Med 152: 1734 1744.Google Scholar
  52. Steinman, R. M., Nogueira, N., Witmer, M. D., Tydings, J. D., and Mellman, I. S., 1980, Lymphokine enhances the expression and synthesis of la antigens on cultured mouse peritoneal macrophages, J. Exp. Med 152: 1248–1261.PubMedCrossRefGoogle Scholar
  53. Taniyama, T. and Watanabe, T., 1982, Establishment of a hybridoma secreting a monoclonal antibody specific for activated tumorcidal macrophages, J. Exp. Med 156: 1286–1292.PubMedCrossRefGoogle Scholar
  54. Unkeless, J., and Eisen, H. N., 1975, Binding of monomeric immunoglobuline to Fc receptors of mouse macrophages, J. Exp. Med 142: 1520–1538.PubMedCrossRefGoogle Scholar
  55. Unkeless, J., 1979, Characterization of monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors, J. Exp. Med 150: 580–596.PubMedCrossRefGoogle Scholar
  56. Unkeless, J., Fleet, H., and Mellman, I. S., 1981, Structural agents and heterogeneity of immunoglobulin Fc receptors, Adv. Immun 31: 247–268.PubMedCrossRefGoogle Scholar
  57. Woodruff, M., and Boak, J. L., 1966, Inhibitory effect of injection of Corynebacterium parvum on the growth of tumor transplants in isogenic hosts, Br. J. Cancer 20: 345349.Google Scholar
  58. Yin, H., Aley, S., Bianco, C., and Cohn, Z. A., 1980, Plasma membrane polypeptides of resident and activated mouse peritoneal macrophages, Proc. Natl. Acad. Sci. USA 77: 2188–2196.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • R. Alan
    • 1
  • B. Ezekowitz
    • 1
  • S. Gordon
    • 1
  1. 1.Sir William Dunn School of PathologyOxford UniversityOxfordEngland

Personalised recommendations