Advertisement

Study of the Uniaxial Deformation of Rubber Network Chains by Small Angle Neutron Scattering

  • Hyuk Yu
  • Toshiaki Kitano
  • Chung Yup Kim
  • Eric J. Amis
  • Taihyun Chang
  • Michael R. Landry
  • Jeffrey A. Wesson
  • Charles C. Han
  • Timothy P. Lodge
  • Charles J. Glinka

Abstract

Small angle neutron scattering (SANS) measurements were performed on poly(isoprene) networks at different uniaxial strains, i.e., 1.0 ≤ λ (extension ratio) ≤ 2.1. The networks were prepared from anionically polymerized, α,ω,-dihydroxy-poly(isoprene) precursors (H-chains) and the corresponding poly(isoprene-d8) isotopic counterparts (D-chains), crosslinked in concentrated tetrahydrofuran solutions by trifunctional crosslinkers, tri-isocyanates. The two components of the radius of gyration of elastic strands, parallel and perpendicular to the strain axis, were determined from the SANS data of the networks with 8% and 15% D-chains. Two molecular weights of D-chains, 26,000 and 64,000, crosslinked with approximately the same molecular weight H-chains (29,000 and 68,000 respectively) were examined for the deformation behaviors. From the observed changes in the parallel and perpendicular components of the radius of gyration relative to macroscopic extension ratio, after appropriate correction for the dangling chain contributions, the chain extensive deformation is found to follow a behavior intermediate between the junction affine model and the phantom network model which allows unrestricted fluctuations of network junctions. On the other hand, the chain contractive deformation follows closely the chain affine model, indicating an asymmetry between extensive and contractive chain deformation. In either case, the deformation behavior is found to be the same for the two molecular weights.

Keywords

Strain Axis Small Angle Neutron Scattering Rubber Elasticity Uniaxial Deformation Extension Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2.
    Treloar, L.R.G. “Physics of Rubber Elasticity”, 1975, Oxford University Press, London.Google Scholar
  2. 3a).
    Flory, P.J. “Principles of Polymer Chemistry”, 1953, Cornell University Press, Ithaca, NY.Google Scholar
  3. b).
    b) Kuhn, W. Kolloid-Z. 1936, 76, 256.Google Scholar
  4. c).
    c) Wall, F.T. J. Chem. Phys. T942, 10, 132; ibid. 1943, 11, 527.Google Scholar
  5. d).
    d) Flory, P.J.; Rehner, J. J. Chem. Phys. 1943, 11, 512.ADSGoogle Scholar
  6. e).
    e) Hermans, J.J. J. Polym. Sci. 1952, 59, 191.ADSCrossRefGoogle Scholar
  7. 4a).
    James, H.M. J. Chem. Phys. 1947, 15, 651.MathSciNetADSGoogle Scholar
  8. b).
    b) James, H.M.; Guth, E. J. Chem. Phys. 1947, 15, 669.ADSGoogle Scholar
  9. 5.
    Graessley, W.W. Macromolecules 1975, 8, 186; ibid., 1975, 8, 865.ADSGoogle Scholar
  10. 6.
    Ronca, G.; Allegra, G. J. Chem. Phys. 1975, 63, 4990.ADSGoogle Scholar
  11. 7.
    Flory, P.J. Proc. Roy. Soc. 1976, A351, 351; J. Chem. Phys. 1977, 12, 5720.Google Scholar
  12. 8.
    Deam, R.T.; Edwards, S.F. Philos. Trans. Roy Soc, 1976, A280, 1296.Google Scholar
  13. 9.
    Daoud, M.; Cotton, J.P.; Farnoux B.; Jannink, G.; Sarma, G.; Benoit, H.; Duplessix, R.;Picot, C.; de Gennes, P.G. Macromolecules 1975, 8, 804.ADSCrossRefGoogle Scholar
  14. 10.
    Kirste, R.G.; Kruse, W.A.; Ibel, K. Polymer, 1975, 16, 120.CrossRefGoogle Scholar
  15. 11.
    Cotton, J.P.; Decker, D.; Benoit, H.; Farnoux, B.; Higgins, J.; Jannink. G.; Ober, R.; Picot, C.; des Cloizeaux, J. Macromolecules, 1974, 7, 863.ADSCrossRefGoogle Scholar
  16. 12.
    Benoit, H.; Decker, D.; Duplessix, R.; Picot, C.; Rempp, P.; Cotton, J.P.; Farnoux, B.; Jannink, G.; Ober, R. J. Poly. Sci., Polym. Phys. Ed. 1976, 14, 2119.Google Scholar
  17. 13.
    Hinkley, J.A.; Han, C.C.; Mozer, B.; Yu, H. Macromolecules 1978, 11, 836.ADSCrossRefGoogle Scholar
  18. 14.
    Clough, S.; Maconnachie, A.; Allen, G. Macromolecules 1980, 13, 774.ADSCrossRefGoogle Scholar
  19. 15.
    Beltzung, M.; Picot, C.; Rempp, P.; Herz, J. Macromolecules 1982, 15, 1594.ADSCrossRefGoogle Scholar
  20. 16.
    Belzung, M.; Herz, J.; Picot, C. Macromolecules 1983, 16, 58.Google Scholar
  21. 17.
    Ullman, R. in “Elastomers and Rubber Elasticity”, 1982, eds., Mark, J.E.; Lal, J. Am. Chem. Soc., D.C.Google Scholar
  22. 18.
    Rubio, D. Ph.D. Thesis, 1975, University of Arkron, Akron, OH.Google Scholar
  23. 19.
    Morton, M.; Fetters, L.J.; Inomata, J.; Rubio, D.C.; Young, R.N. Rubb. Chem Tech. 1976, 49 303.Google Scholar
  24. 20.
    Normant, H.; Angelo, B. Bull. Chim. Soc. Fr., 1960, 354.Google Scholar
  25. 21.
    Kitano, T.; Fujimoto, T.; Nagasawa, M. Macromolecules 1974, 7, 719.ADSCrossRefGoogle Scholar
  26. 22.
    ASTM D2572–80.Google Scholar
  27. 23.
    Glinka, C.J. AIP Conf. Proc. No. 89, Neutron Scattering, Argonne National Lab 1981, p. 395.Google Scholar
  28. 24.
    Akcasu, A.Z.; Summerfield, G.C.; Jahshan, S.N.; Han, C.C.; Kim, C.Y.; Yu, H. J. Polym. Sci., Polym. Phys. Ed. 1980, 18, 863.Google Scholar
  29. 25.
    Schoenborn, B.P.; Nunes, A.C. Annual Rev. Biophys. Bioeng. 1972, 1, 529.CrossRefGoogle Scholar
  30. 26.
    Debye, P. J. Phys. Colloid. Chem. 1947, 51, 18.CrossRefGoogle Scholar
  31. 27.
    Miller, D.R.; Macosko, C.W. Macromolecules 1976, 9, 206.ADSCrossRefGoogle Scholar
  32. 28.
    Flory, P.J. Chem. Rev. (1944) 35, 51.CrossRefGoogle Scholar
  33. 29.
    Flory, P.J. J. Chem. Phys. 1977, 66, 5720.ADSCrossRefGoogle Scholar
  34. 30.
    Bastide, J.; 13 Picott, C.; Candan, s. J. Macromol. Phys. 1981, B19, 13.Google Scholar
  35. 31.
    Ullman, R. Macromolecules 1982, 15, 582.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Hyuk Yu
    • 1
  • Toshiaki Kitano
    • 1
  • Chung Yup Kim
    • 1
  • Eric J. Amis
    • 1
    • 3
  • Taihyun Chang
    • 1
  • Michael R. Landry
    • 1
  • Jeffrey A. Wesson
    • 1
  • Charles C. Han
    • 2
  • Timothy P. Lodge
    • 2
    • 4
  • Charles J. Glinka
    • 2
  1. 1.Department of ChemistryUniversity of WisconsinMadisonUSA
  2. 2.Center for Materials ScienceNational Bureau of StandardsGaithersburgUSA
  3. 3.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA
  4. 4.Department of ChemistryUniversity of MinnesotaMinneapolisUSA

Personalised recommendations