The Kinetics of Intramolecular Distribution of 15N in Uric Acid Following Administration of 15N-Glycine: Preferential Labeling of N−(3+9) of Uric Acid in Primary Gout and a Reappraisal of the “Glutamine Hypothesis”

  • Oded Sperling
  • James B. Wyngaarden
  • C. Frank Starmer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 41 B)


Patients with primary gout and excessive uric acid excretion fed a test dose of 15N-glycine incorporate increased quantities of 15N into urinary urate [1–4]. Although enrichment of all 4 nitrogen atoms of uric acid is excessive [4,5] that of N−(3+9) is disproportionately great, especially in flamboyant overexcretors of uric acid [5]. Since N−3 and N−9 of uric acid are derived from the amide-N of glutamine [6,7], Gutman and Yu [5,8] proposed a defect in glutamine metabolism in primary gout. Since urinary ammonium, which arises principally from glutamine [9,10], is reduced in many gouty subjects [11,12], they further postulated a reduction of glutaminase activity [5,8]. The hyperglutamatemia of gout has now suggested a defect of glutamate metabolism, with diversion of glutamic acid toward glutamine and purine biosynthesis [13,14].


Uric Acid Hippuric Acid Phenylacetic Acid Glutamine Metabolism Purine Biosynthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benedict, J. D., T.-F. Yu, E. J. Bien, A. B. Gutman, and DeW. Stetten, Jr. 1953. A further study of the utilization of dietary glycine nitrogen for uric acid synthesis in gout. J. Clin. Invest. 32:775.PubMedCrossRefGoogle Scholar
  2. 2.
    Gutman, A. B., T.-F. Yu, H. Black, R. S. Yalow, and S. A. Berson. 1958. Incorporation of glycine 1-C14 and glycine-N15 into uric acid in normal and gouty subjects. Amer. J. Med. 25:917.PubMedCrossRefGoogle Scholar
  3. 3.
    Seegmiller, J. E., A. I. Grayzel, L. Laster, and L. Liddle. 1961. Uric acid production in gout. J. Clin. Invest. 40:1304.PubMedCrossRefGoogle Scholar
  4. 4.
    Gutman, A. B., T.-F. Yu, M. Adler, and N. B. Javitt. 1962. Intramolecular distribution of uric acid-N15 after administration of glycine-N15 and ammonium N15 chloride to gouty and nongouty subjects. J. Clin. Invest. 41:623.PubMedCrossRefGoogle Scholar
  5. 5.
    Gutman, A. B., and T.-F. Yu. 1963. An abnormality of glutamine metabolism in primary gout. Amer. J. Med. 35:820.PubMedCrossRefGoogle Scholar
  6. 6.
    Sonne, J. C, I. Lin, and J. M. Buchanan. 1956. Biosynthesis of the purines. IX. Precursors of the nitrogen atoms of the purine ring. J. Biol. Chem. 220:369.PubMedGoogle Scholar
  7. 7.
    Levenberg, B., S. C. Hartman, and J. M. Buchanan. 1956. Biosynthesis of the purines. X. Further studies in vitroon the metabolic origin of nitrogen atoms 1 and 3 of the purine ring. J. Biol. Chem. 220:379.PubMedGoogle Scholar
  8. 8.
    Gutman, A. B., and T.-F. Yu. 1963. On the nature of the inborn metabolic error (s) of primary gout. Trans. Assoc. Amer. Physicians 76:141.Google Scholar
  9. 9.
    Pitts, R. F., L. A. Pilkington, and J. C. M. DeHaas. 1965. N15 tracer studies on the origin of urinary ammonia in the acidotic dog, with notes on the enzymatic synthesis of labeled glutamic acid and glutamine. J. Clin. Invest. 44:731.PubMedCrossRefGoogle Scholar
  10. 10.
    Stone, W. J., S. Balagura, and R. F. Pitts. 1967. Diffusion equilibrium for ammonia in the kidney of the acidotic dog. J. Clin. Invest. 46:1603.PubMedCrossRefGoogle Scholar
  11. 11.
    Gutman, A. B., and T.-F. Yu. 1965. Urinary ammonium excretion in primary gout. J. Clin. Invest. 44:1474.PubMedCrossRefGoogle Scholar
  12. 12.
    Sperling, O., M. Frank, and A. de Vries. 1966. L’excretion d’ammoniac au cours de la goutte. Rev. Franc. Etud. Clin. Biol. 11:401.Google Scholar
  13. 13.
    Yu, T.-F., M. Adler, E. Bobrow, and A. B. Gutman. 1969. Plasma and urinary amino acids in primary gout, with special reference to glutamine. J. Clin. Invest. 48:885.PubMedCrossRefGoogle Scholar
  14. 14.
    Pagliara, A. S., and A. D. Goodman. 1969. Elevation of plasma glutamate in gout, its possible role in the pathogenesis of hyperuricemia. New Eng. J. Med. 281:767.PubMedCrossRefGoogle Scholar
  15. 15.
    Kelley, W. N., F. M. Rosenbloom, J. E. Seegmiller, and R. R. Howell. 1968. Excessive production of uric acid in type I glycogen storage disease. J. Pediat. 72:488.PubMedCrossRefGoogle Scholar
  16. 16.
    Kelley, W. N., M. L. Greene, F. M. Rosenbloom, J. F. Henderson, and J. E. Seegmiller. 1969. Hypoxanthine-guanine phosphoribosyl-transferase deficiency in gout. Ann. Intern. Med. 70:155.PubMedCrossRefGoogle Scholar
  17. 17.
    Emmerson, B. T., and J. B. Wyngaarden. 1969. Purine metabolism in heterozygous carriers of hypoxanthine guanine phosphoribosyltransferase deficiency. Science. 166:1533.PubMedCrossRefGoogle Scholar
  18. 18.
    Sperling, O., M. Frank, R. Ophir, U. A. Liberman, A. Adam, and A. de Vries. 1970. Partial deficiency of hypoxanthineguanine phosphoribosyltransferase associated with gout and uric acid lithiasis. Rev. Europ. Etud. Clin. Biol. 15:942.Google Scholar
  19. 19.
    Sperling, O., P. Boer, S. Persky-Brosh, E. Kanarek, and A. de Vries. 1972. Altered kinetic property of erythrocyte phosphoribosylpyrophosphate synthetase in excessive purine production. Europ. J. Clin. Biol. Res. 17:703.Google Scholar
  20. 20.
    Sperling, O., S. Persky-Brosh, P. Boer, and A. de Vries. 1973. Human erythrocyte phosphoribosylpyrophosphate synthetase mutationally altered in regulatory properties. Biochem. Med. In press.Google Scholar
  21. 21.
    Becker, II, A., L. J. Meyer, A. W. Wood, and J. E. Seegmiller. 1973. Purine overproduction in man associated with increased phosphoribosylpyrophosphate synthetase activity. Science 179:1123.PubMedCrossRefGoogle Scholar
  22. 22.
    Schoenheimer, R., and S. Ratner. 1939. Studies in protein metabolism. III. Synthesis of amino acids containing isotopic nitrogen. J. Biol. Chem. 127:301.Google Scholar
  23. 23.
    Praetorius, E. 1949. An enzymatic method for the determination of uric acid by ultraviolet spectrophotometry. Scand. J. Clin. Lab. Invest. 1:222.CrossRefGoogle Scholar
  24. 24.
    Shemin, D., and D. Rittenberg. 1947. On the utilization of glycine for uric acid synthesis in man. J. Biol. Chem. 167:875.PubMedGoogle Scholar
  25. 25.
    Brandenberger, H. 1954. The oxidation of uric acid to oxonic acid (allantoxanic acid) and its application in tracer studies of uric acid biosynthesis. Biochim. Biophys. Acta. 15:108.PubMedCrossRefGoogle Scholar
  26. 26.
    Sonne, J. C, I. Lin, and J. M. Buchanan. 1956. Biosynthesis of the purines. IX. Precursors of the nitrogen atoms of the purine ring. J. Biol. Chem. 220:369.PubMedGoogle Scholar
  27. 27.
    Quick, A. J. 1940. Clinical application of hippuric acid and prothrombin tests. Amer. J. Clin. Path. 10:222.Google Scholar
  28. 28.
    Howell, R. R., M. Speas, and J. B. Wyngaarden. 1961. A quantitative study of recycling of isotope from glycine-1-C14, α-N-15 into various subunits of the uric acid molecule in a normal subject. J. Clin. Invest. 40:2076.PubMedCrossRefGoogle Scholar
  29. 29.
    Stein, W. H. 1953. A Chromatographic investigation of the amino acid constituents of normal urine. J. Biol. Chem. 201:45.PubMedGoogle Scholar
  30. 30.
    Hirs, C. H., S. Moore, and W. H. Stein. 1954. The chromatography of amino acids on ion exchange resins. Use of volatile acids for elution. J. Amer. Chem. Soc. 76:6063.CrossRefGoogle Scholar
  31. 31.
    Prescott, B. A., and H. Waelsch. 1947. Free and combined glutamic acid in human blood plasma and serum. J. Biol. Chem. 167:855.PubMedGoogle Scholar
  32. 32.
    Rittenberg, D. 1946. Preparation of gas samples for mass spectrographic isotope analysis. In Preparation and Measurement of Isotopic Tracers. D. W. Wilson, A. O. C. Nier, and S. P. Reimann, editors. Edwards, Ann Arbor, 31.Google Scholar
  33. 33.
    Gutman, A. B., and T.-F. Yu. 1957. Renal function in gout with a commentary on the renal regulation of urate excretion, and the role of the kidney in the pathogenesis of gout. Amer. J. Med. 23:600.PubMedCrossRefGoogle Scholar
  34. 34.
    Lesch, M., and W. L. Nyhan. 1964. A familial disorder of uric acid metabolism and central nervous function. Amer. J. Med. 36:561.PubMedCrossRefGoogle Scholar
  35. 35.
    Sperling, O., G. Eilam, S. Persky-Brosh, and A. de Vries. 1972. Accelerated erythrocyte 5-phosphoribosyl-l-pyrophosphate synthesis. A familial abnormality associated with excessive uric acid production and gout. Biochem. Med. 6:310.PubMedCrossRefGoogle Scholar
  36. 36.
    Henderson, J. F., F. M. Rosenbloom, W. N. Kelley, and J. E. Seegmiller. 1968. Variations in purine metabolism of cultured skin fibroblasts from patients with gout. J. Clin. Invest. 47:1511.PubMedCrossRefGoogle Scholar
  37. 37.
    Seegmiller, J. E., J. R. Klinenberg, J. Miller, and R. W. E. Watts. 1968. Suppression of glycine-N-15 incorporation into urinary uric acid by adenine-8-C13 in normal and gouty subjects. J. Clin. Invest. 47:1193.PubMedCrossRefGoogle Scholar
  38. 38.
    Kelley, W. N., F. M. Rosenbloom, and J. E. Seegmiller. 1967. The effect of azathioprine (Imuran) on purine synthesis in clinical disorders of purine metabolism. J. Clin. Invest. 46:1518.PubMedCrossRefGoogle Scholar
  39. 39.
    Wyngaarden, J. B. 1966. Gout. In The Metabolic Basis of Inherited Disease, 2nd ed. J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, editors. New York, McGraw-Hill, p. 667.Google Scholar
  40. 40.
    Draper, N. R., and H. Smith. 1966. Applied Regression Analysis. New York, John Wiley, Chp. 10.Google Scholar
  41. 41.
    Sherwin, C. P., M. Wolf, and W. Wolf. 1919. The maximum production of glutamine by the human body as measured by the output of phenylacetylglutamine. J. Biol. Chem. 37:113.Google Scholar
  42. 42.
    Moldave, K., and A. Meister. 1957. Synthesis of phenylacetylglutamine by human tissue. J. Biol. Chem. 229:463.PubMedGoogle Scholar
  43. 43.
    Zilversmit, D. B., C. Entenman, and M. C. Fishier. 1943. On the calculation of “turnover time” and “turnover rate” from experiments involving the use of labeling agents. J. Gen. Physiol. 26:325.PubMedCrossRefGoogle Scholar
  44. 44.
    Starmer, C. F., O. Sperling, and J. B. Wyngaarden. A kinetic model for uric acid labeling in primary gout. In preparation.Google Scholar
  45. 45.
    Wu, H., and C. W. Bishop. 1959. Pattern of N15-excretion in man following administration of N15-labeled glycine. J. Appl. Physiol. 14:1.PubMedGoogle Scholar
  46. 46.
    Wyngaarden, J. B. 1972. Glutamine phosphoribosylpyrophosphate amidotransferase. In Current Topics in Cellular Regulation. B. Horecker and E. R. Stadtman, editors. New York, Academic Press, Vol. V, p. 135.Google Scholar
  47. 47.
    Holmes, E. W., J. A. McDonald, J. M. McCord, J. B. Wyngaarden, and W. N. Kelley. 1973. Human glutamine phosphoribosylpyrophosphate amidotransferase: Kinetic and regulatory properties. J. Biol. Chem. 248:144.PubMedGoogle Scholar
  48. 48.
    Holmes, E. W., J. B. Wyngaarden and W. N. Kelley. 1973. Human glutamine phosphoribosylpyrophosphate amidotransferase: Two molecular forms interconvertible by purine ribonucleotides and phosphoribosylpyrophosphate. J. Biol. Chem. (In press.).Google Scholar
  49. 49.
    Greene, M. L., and J. E. Seegmiller. 1969. Elevated erythrocyte phosphoribosylpyrophosphate in X-linked uric aciduria: Importance of PRPP concentration in the regulation of human purine biosynthesis. J. Clin. Invest. 48:32a.Google Scholar
  50. 50.
    Fox, I., and W. N. Kelley. 1971. Phosphoribosylpyrophosphate in man: Biochemical and clinical significance. Ann. Intern. Med. 74:424.PubMedCrossRefGoogle Scholar
  51. 51.
    Fox, I. H., J. B. Wyngaarden, and W. N. Kelley. 1970. Depletion of erythrocyte phosphoribosylpyrophosphate in man, a newly observed effect of allopurinol. New Eng. J. Med. 283:1177.PubMedCrossRefGoogle Scholar
  52. 52.
    Henderson, J. F., and M. K. Y. Khoo. 1965. Synthesis of 5-phosphoribosyl-1-pyrophosphate from glucose in Ehrlich ascites tumor cells in vitro. J. Biol. Chem. 240:2349.PubMedGoogle Scholar
  53. 53.
    Kelley, W. N., I. H. Fox, and J. B. Wyngaarden. 1970. Regulation of purine biosynthesis in cultured human cells. I. Effects of orotic acid. Biochim. Biophys. Acta. 215:512.PubMedCrossRefGoogle Scholar
  54. 54.
    Hershko, A., C. Hershko, and J. Mager. 1968. Increased formation of 5-phosphoribosyl-l-pyrophosphate in red blood cells of some gouty patients. Israel Med. J. 4:939.Google Scholar
  55. 55.
    Sperling, O., R. Ophir, and A. de Vries. 1971. Purine base incorporation into erythrocyte nucleotides and erythrocyte phosphoribosyltransferase activity in primary gout. Rev. Europ. Etudes Clin. et Biol. 16:147.Google Scholar
  56. 56.
    Jones, O. W., Jr., D. M. Ashton, and J. B. Wyngaarden. 1962. Accelerated turnover of phosphoribosylpyrophosphate, a purine nucleotide precursor, in certain gouty subjects. J. Clin. Invest. 41:1805.PubMedCrossRefGoogle Scholar
  57. 57.
    Segal, S., and J. B. Wyngaarden. 1955. Plasma glutamine and oxypurine content in patients with gout. Proc. Soc. Exp. Biol. Med. 88:342.PubMedCrossRefGoogle Scholar
  58. 58.
    Wood, A. W. and Seegmiller, J. E. 1973. Properties of 5-phosphoribosyl-1-pyrophosphate amidotransferase from human lymphoblasts. J. Biol. Chem. 248:138.PubMedGoogle Scholar
  59. 59.
    Raivio, K. O., and J. E. Seegmiller. 1971. Role of glutamine in purine synthesis and interconversion. Clin. Res. 19:161.Google Scholar
  60. 60.
    Williamson, D. H., O. Lopes-Vieira, and B. Walker. 1967. Concentrations of free glucogenic amino acids in livers of rats subjected to various metabolic stresses. Biochem. J. 104:497.PubMedGoogle Scholar
  61. 61.
    Kennan, A. L. 1962. Glutamine synthesis in rats with diabetic acidosis. Endocrinology. 71:203.PubMedCrossRefGoogle Scholar
  62. 62.
    Bergmeyer, H. U. 1970. Methoden der enzymatischen Analyse, Verlag-Chemie. Weinheim/ Bergstrasse. Book II. p. 2206.Google Scholar
  63. 63.
    Caskey, C. T., D. M. Ashton, and J. B. Wyngaarden. 1964. The enzymology of feedback inhibition of glutamine phosphoribosylpyrophosphate amidotransferase by purine ribonucleotides. J. Biol. Chem. 239:2570.PubMedGoogle Scholar
  64. 64.
    Pollak, V. E., and H. Mattenheimer. 1965. Glutaminase activity in the kidney in gout. J. Lab. Clin. Med. 66:564.PubMedGoogle Scholar
  65. 65.
    Pitts, R. F. 1964. Renal production and excretion of ammonia. Amer. J. Med. 36:720.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • Oded Sperling
    • 1
    • 2
  • James B. Wyngaarden
    • 1
    • 2
  • C. Frank Starmer
    • 1
    • 2
  1. 1.Department of MedicineDuke University Medical CenterDurhamUSA
  2. 2.The Rogoff-Wellcome Medical Research InstituteTel Aviv University Medical School, Beilinson HospitalPetah TikvaIsrael

Personalised recommendations