Advertisement

A Systems Analysis—Thermodynamic View of Cellular and Organismic Aging

  • Jaime Miquel
  • Angelos C. Economos
  • John E. JohnsonJr.

Abstract

Major theories of aging usually focus on senescent failure in important physiological systems (neuroendocrine, immunological, etc.) or specific molecular mechanisms such as DNA loss, enzyme inactivation, or macromolecular cross-linkage. Seldom is an attempt made to integrate the data using a systems analysis approach (Miller, 1978), and even more rarely is aging viewed as a thermodynamic process resulting from the interaction of an organism with the energy and matter of its environment (see Strehler, 1967; Sacher, 1967; Economos and Miguel, 1977; Miguel et al., 1979; Economos, 1982).

Keywords

Subcellular Organelle Negative Geotaxis Free Radical Injury System Analysis Approach Hollow Arrow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albring, M., Griffith, J., and Attardi, G., 1977, Association of a protein structure of probable membrane derivation with HeLa cell mitochondria DNA near its origin of replication, Proc. Natl. Acad. Sci. USA 74: 1348.PubMedCrossRefGoogle Scholar
  2. Alpatov, W. W., and Pearl, R., 1929, Experimental studies on the duration of life. XII. Influence of temperature during the larval period and adult life on the duration of life of the imago of Drosophila melanogaster, Amer. Naturalist 63: 37.CrossRefGoogle Scholar
  3. Atlan, H., Miguel, J., and Welch, G., 1970, Effects of low and high LET cyclotron accelerated particles on longevity of Drosophila melanogaster. Int. J. Radiat. Biol. 18: 423.CrossRefGoogle Scholar
  4. Atlan, H., Miguel, J., Helmle, L. C., and Dolkas, C. B., 1976, Thermodynamics of aging in Drosophila melanogaster, Mech. Ageing Del). 5: 371.CrossRefGoogle Scholar
  5. Beard, R. E., 1959, Note on some mathematical models, CIBA Found. Colloq. Ageing 5: 302.Google Scholar
  6. Bielski, B. H. J., and Gebicki, J. M., 1977, Application of radiation chemistry to biology, in: Free Radicals in Biology ( W. A. Pryor, Ed.), Vol. 3, pp. 1–51, Academic Press, New York.Google Scholar
  7. Chance, B., Sies, H., and Boveris, A., 1979, Hydroperoxide metabolism in mammalian organs, Physiol. Rev. 59: 527.PubMedGoogle Scholar
  8. Cutler, R. G., 1978, Cross-linkage hypothesis of aging: DNA adducts in chromatin as a primary aging process, in: Proteins and Other Adducts to DNA: Their Significance to Aging, Carcinogenesis and Radiation Biology ( K. C. Smith, ed.), p. 443, Plenum Press, New York.Google Scholar
  9. Dobzhanski, T., 1964, Introduction Proc. Natl. Acad. Sci. USA 51: 907.CrossRefGoogle Scholar
  10. Economos. A. C., 1979, A non-Gompertzian paradigma for mortality kinetics of metazoan animals and failure kinetics of manufactured products, Age 2: 74.CrossRefGoogle Scholar
  11. Economos, A. C., 1980, Kinetics of metazoan mortality, J. Soc. Biol. Struct. 3: 317.CrossRefGoogle Scholar
  12. Economos, A. C., 1982, Rate of aging, rate of dying and the mechanisms of mortality, Arch. Geront. Geriatr. 1: 3.CrossRefGoogle Scholar
  13. Economos, A. C., and Miguel, J., 1977, Systems analysis of the effect of temperature, oxygen and radiation on mortality kinetics of fruit flies: rate of living and rate of dying, Proc. 30th ACEMB, p. 448.Google Scholar
  14. Economos, A. C., and Miguel, J., 1978, Non-Gompertzian mortality kinetics, Age 1: 76 (abstract), 1978.Google Scholar
  15. Economos, A. C., and Miguel, J., 1979, Analysis of population mortality kinetics with application to the longevity follow-up of the Navy’s “1000 aviators,” Aviat. Space Environ. Med. 50: 397.Google Scholar
  16. Economos, A. C., and Miguel, J., 1980, Usefulness of stochastic analysis of body weight of mice as a tool in experimental aging research, Exp. Ageing Res. 6: 417.CrossRefGoogle Scholar
  17. Economos, A. C., Miguel, J., Binnard, R., and Kessler, S. 1979, Quantitative analysis of mating behavior in aging male Drosophila melanogaster, Mech. Ageing Dev. 10: 233.PubMedCrossRefGoogle Scholar
  18. Economos, A. C., Miguel, J., Fleming, J., and Johnson, J. E., Jr., 1980, Is there intrinsic mitochondrial aging? Age 3: 117.Google Scholar
  19. Economos, A. C., Miguel, J., Ballard, R. C., and Johnson, J. E., Jr., 1981, Variation, principles and application in the study of cell structure and aging, Aging Cell Struct 1: 187.CrossRefGoogle Scholar
  20. Economos, A. C., Ballard, R. C., Miguel, J., Binnard, R. and Philpott, D. E., 1982, Accelerated aging of fasted Drosophila: Preservation of physiological function and cellular fine structure by thiazolidine carboxylic acid (TCA). Exp. Gerontol. 75: 105.CrossRefGoogle Scholar
  21. Fleming, J. E., Miguel, J., Cottrell, S. F., Yengoyan, L. S., and Economos, A. C., 1982, Is cell aging caused by respiration-dependent injury to the mitochondrial genome? Gerontology 28: 44.PubMedCrossRefGoogle Scholar
  22. Flohe, L., Loschen, G., Azzi, A., and Richter, Ch, 1977, Superoxide radicals in mitochondria in: Superoxide and Superoxide Dismutases (A. M. Michelson, J. M. McCord, and I. Fridovich, eds.), pp. 323–334, Academic Press, New York.Google Scholar
  23. Fukanaga, M., and Yielding, K. L., 1979, Fate during cell growth of yeast mitochondrial and nuclear DNA after photolytic attachment of the monoazide analog of ethidium bromide, Biochem. Biophys. Res. Commun. 90: 582.CrossRefGoogle Scholar
  24. Gerschman, R. 1964, Biological effects of oxygen, in: Oxygen in the Animal Organism ( F. Dickens and E. Neil, eds.), pp. 478–479, The MacMillan Co., New York.Google Scholar
  25. Glansdorff, P., and Prigogine, I., 1971, Structure, Stability and Fluctuations, Wiley, New York.Google Scholar
  26. Gompertz, B., 1825, On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Philos. Trans. R. Soc. London, 252.Google Scholar
  27. Haran, D., 1956, Aging, a theory based on free radical and radiation chemistry, J. Gerontol. 11: 298.CrossRefGoogle Scholar
  28. Hayflick, L., 1965, The limited in vitro life time of human diploid cell strains, Exp. Cell Res. 37: 614.PubMedCrossRefGoogle Scholar
  29. Hayflick, L., 1979, Progress in cytogerontology, Mech. Ageing Dev. 9: 393.PubMedCrossRefGoogle Scholar
  30. Johnson, J. E., Jr., 1979, Fine structure of IMR-90 cells in culture as examined by scanning and transmission electron microscopy, Mech. Ageing Dev. 10: 405.PubMedCrossRefGoogle Scholar
  31. Kirkwood, T., 1979, Senescence and the selfish gene, New Scientist 81: 1040.Google Scholar
  32. Kohn, R. R., 1977, Principles of Mammalian Aging, Prentice Hall, Inc., Englewood Cliffs, New Jersey.Google Scholar
  33. Loeb, J., and Northrop, J. H., 1917, On the influence of food and temperature upon the duration of life, J. Biol. Chem. 32: 103.Google Scholar
  34. Martin, G. M., Sprague, C. A., Norwood, T. H., Pendergrass, W. R., Bernstein, P., Hoehn, H., and Arend, W. P., 1973, Do hyperplastoid cells differentiate themselves to death?, in: Cell Impairment in Ageing and Development (V. J. Cristofalo and E. Holeckova, eds.), pp. 6790, Plenum Press, New York.Google Scholar
  35. Masoro, E. J., 1981, CRC Handbook of Physiology in Aging, CRC Press, Inc., Boca Raton, Florida.Google Scholar
  36. Massie, H. R., Baird, M. B., and McMahon, M. M., 1975, Loss of mitochondrial DNA with aging, Gerontology 21: 231.CrossRefGoogle Scholar
  37. Massie, H. R., Colacicco, J. R., and Williams, T. R., 1981, Loss of mitochondrial DNA with aging in the Swedish C strain of Drosophila melanogaster, Age 4: 42.CrossRefGoogle Scholar
  38. Medvedev, Z., 1972, Repetition of molecular-genetic information as a possible factor in evolutionary changes in life span, Exp. Gerontol. 7: 227.PubMedCrossRefGoogle Scholar
  39. Miller, A., 1965, The internal anatomy of the imago of Drosophila melanogaster, in: Biology of Drosophila ( M. Demerec, ed.), pp. 420–534, Hafner, New York.Google Scholar
  40. Miller, J. G., 1978, Living Systems, McGraw-Hill Book Co., New York.Google Scholar
  41. Minot, C. S., 1907, The problem of age, growth and death, Popular Sci. Monthly, 71: 496.Google Scholar
  42. Miguel, J., 1971, Aging of male Drosophila melanogaster: Histological histochemical and ultra-structural observations, Adv. Gerontol. Res. 3: 39.Google Scholar
  43. Miguel, J., and Blasco, M., 1978, A simple technique for evaluation of vitality loss in aging mice, by testing their muscular coordination and vigor, Exp. Gerontol. 13: 389.CrossRefGoogle Scholar
  44. Miguel, J., and Economos, A. C., 1979, Favorable effects of the antioxidants sodium and magnesium thiazolidine carboxylate on the vitality and life span of Drosophila and mice, Exp. Gerontol. 14: 279.CrossRefGoogle Scholar
  45. Miguel, J., and Haymaker, W., 1965, Astroglial reactions to ionizing radiation (with emphasis on glycogen accumulation). Progress Brain Res. 15: 89.CrossRefGoogle Scholar
  46. Miguel, J., and Johnson, J. E., Jr., 1978, Senescent changes in the ribosomes of animal cells in vivo and in vitro, Mech Ageing Dev. 9: 247.CrossRefGoogle Scholar
  47. Miguel, J.,Calvo, W., and Rubinstein, L. J.,1968, A simple and rapid stain for the biopsy diagnosis of brain tumors, J. Neuropath. Exp. Neurol. 27:517.Google Scholar
  48. Miguel, J.,Lundgren, P. R., Bensch, K. G., and Atlan, H., 1976. Effects of temperature on the life span, vitality and fine structure of Drosophila melanogaster, Mech. Ageing Dev. 5:347.Google Scholar
  49. Miguel, J.,Oro, J.,Bensch, K. G., and Johnson, J. E., Jr., 1977. Lipofuscin: Fine structural and biochemical studies, in: Free Radicals in Biology, Vol. 3 (Pryor, W., ed.), pp. 133–182, Academic Press, New York.Google Scholar
  50. Miguel, J., Economos, A. C., Bensch, K. G., Atlan, H., and Johnson, J. E., Jr., 1979, Review of cell aging in Drosophila and mouse, Age 2: 78.CrossRefGoogle Scholar
  51. Miguel, J., Economos, A. C., Fleming, J., and Johnson, J. E., Jr., 1980, Mitochondrial role in cell aging, Exp. Gerontol. 15: 575.CrossRefGoogle Scholar
  52. Miguel, J., Economos, A. C., and Bensch, K. G., 1981, Insect vs. mammalian aging, Aging Cell Struct. 1: 347.CrossRefGoogle Scholar
  53. Miguel, J., Fleming, J., and Economos, A. C., 1982, Antioxidants metabolic rate and aging in Drosophila, Arch. Gerontol. Geriatr. 1: 159.CrossRefGoogle Scholar
  54. Nass, S., and Nass, M. M. K., 1964, Intramitochondrial fibers with deoxyribonucleic acid characteristics: observations of Ehrlich ascites tumor cells,, J. Natl. Cancer Inst. 33: 777.PubMedGoogle Scholar
  55. Nohl, H., and Hegner, D., 1978, Do mitochondria produce oxygen radicals in vitro? Eur. J. Biochem. 82: 563.CrossRefGoogle Scholar
  56. Pearl, R., 1928, The Rate of Living, Knopf, New York.Google Scholar
  57. Prigogine, I., 1947, Etude Thermodynamique des Phénomènes Irreversibles, Desoer, Liege, 1947.Google Scholar
  58. Pryor, W. A., 1976, The role of free radical reactions in biological systems, in: Free Radicals in Biology, Vol. 1 (W. A. Pryor, ed.), pp. 1–50, Academic Press, New York.Google Scholar
  59. Puig-Muset, P., 1976, Oxygeno(s), Oikos-tau, S. A., Ediciones, Barcelona.Google Scholar
  60. Rosenberg, B., Kemeny, G., Smith, L. G., Skurnik, I. D., and Bandurski, M. J., 1973, The kinetics and thermodynamics of death in multicellular organisms, Mech. Ageing Dev. 2: 275.PubMedCrossRefGoogle Scholar
  61. Rothstein, M., 1981, Postranslational alteration of proteins, in: CRC Handbook of Biochemistry of Aging (Florini, J. R., ed.,), pp. 103–111, CRC Press, Inc., Boca Raton, Florida.Google Scholar
  62. Rubner, M., 1908, Das Problem der Lebensdauer and seine Beziehungen zum Wachstum and Ernährung, Oldenburg, Munich.Google Scholar
  63. Sacher, G. A., 1967, The complementarity of entropy terms for the temperature-dependence of development and aging, Ann. N. Y. Acad. Sci. 138: 680.CrossRefGoogle Scholar
  64. Sacher, G. A. 1977, Life table modification and life prolongation, in: Handbook of the Biology of Aging ( C. E. Finch and L. Hayffick, eds.), pp. 582–639, Van Nostrand Reinhold, Co., New York.Google Scholar
  65. Schrödinger, E., 1945, What is Life? Cambridge U. P., Cambridge.Google Scholar
  66. Shearman, C. W., and Kalf, G. F., (1977), DNA replication by a membrane-DNA complex from rat liver mitochondria. Arch. Biochem. Biophys. 182: 573.PubMedCrossRefGoogle Scholar
  67. Sheldahl, J., and Tappel, A., 1974, Fluorescent products from aging Drosophila melanogaster: An indicator of free radical lipid peroxidation damage. Exp. Gerontol. 9: 33.PubMedCrossRefGoogle Scholar
  68. Shock, N. W., 1970, Physiological aspects of aging, J. Am. Diet. Associat. 56: 491.Google Scholar
  69. Sohal, R. S., 1981, Metabolic rate, aging, and lipofuscin accumulation, in: Age Pigments ( R. S. Sohal, ed.), pp. 303–316, Elsevier-North Holland, New York.Google Scholar
  70. Sohal, R. S., 1982, Oxygen consumption and life span in the adult male house fly, Musca domestica, Age 5: 21.CrossRefGoogle Scholar
  71. Strehler, B. L., 1967, Environmental factors in aging and mortality, Env. Res. 1: 46.CrossRefGoogle Scholar
  72. Strehler, B. L., 1977, Time, Cells and Aging, pp. 103–124, Academic Press, New York.Google Scholar
  73. Strehler, B. L., and Chang, M-P, 1979, Loss of hybridizable ribosomal DNA from human postmitotic tissues during aging: II. Age-dependent loss in human cerebral cortex—hippocampal and somatosensory cortex comparison. Mech. Ageing Dev. 11: 379.PubMedCrossRefGoogle Scholar
  74. Strehler, B. L., Chang, M-P., and Johnson, L. K., 1979, Loss of hybridizable ribosomal DNA from human postmitotic tissues during aging. I. Age-dependent loss in human myocardium, Mech. Ageing Dev. 11: 371.PubMedCrossRefGoogle Scholar
  75. Sun, A. S., Aggarwal, B. B., and Packer, L., 1975, Enzyme levels of normal human cells: Aging in culture, Arch, Biochem. Biophys. 170: 1.CrossRefGoogle Scholar
  76. Tappel, A. L., 1965, Free radical lipid peroxidation damage and its inhibition by vitamin E and selenium, Fed. Proc. 24: 73.PubMedGoogle Scholar
  77. Tappel. A. L., 1973, Lipid peroxidation damage to cell components, Fed. Proc. 32: 1870.PubMedGoogle Scholar
  78. Tas, S., 1976, Disulfide bonding in chromatin proteins with age and a suggested mechanism for aging and neoplasia, Exp. Gerontol. 11: 17.PubMedCrossRefGoogle Scholar
  79. Tas, S., 1978, Involvement of disulfide bonds in the condensed structure of facultative heterochromatin and implications for cellular differentiation and aging, Gerontology 24: 358.PubMedCrossRefGoogle Scholar
  80. Zeman, W., Curtis, H. J., Gebhard, E. L., and Haymaker, W., 1959, Tolerance of mouse brain tissue to high-energy deuterons, Science 130: 1760.PubMedCrossRefGoogle Scholar
  81. Zs.-Nagy, I., 1979, The role of membrane structure and function in cellular aging: A review, Mech. Ageing Dev. 9: 237.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Jaime Miquel
    • 1
  • Angelos C. Economos
    • 2
  • John E. JohnsonJr.
    • 3
    • 4
  1. 1.Biomedical Research DivisionNASA Ames Research CenterMoffett FieldUSA
  2. 2.Genetics LaboratoryCatholic University of LouvainLouvain-la-NeuveBelgium
  3. 3.Department of NeurologyJohns Hopkins University School of MedicineBaltimoreUSA
  4. 4.National Institute on Aging, National Institutes of HealthBaltimore City HospitalsBaltimoreUSA

Personalised recommendations