Advertisement

Biochemical Correlates of Tolerance in Rodents and in Drosophila. Possible Role of Alcohol Dehydrogenase, Aldehyde Dehydrogenase and Superoxide Dismutase

  • P. Mandel
  • M. Ledig
  • B. Le Bourhis
  • Françoise Garcin
  • S. Radouco-Thomas
  • S. Chawla
  • C. Radouco-Thomas

Abstract

In the rat, prolonged exposure to ethanol (ETOH) vapor induced an acquired increase in tolerance. After a single ETOH administration, the duration of recovery was decreased by 20% as compared to control animals and the rate of ETOH elimination from blood was increased by 27%. From the data obtained on liver enzymes—alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH) and superoxide dismutase (SOD)—it is suggested that the increased ALDH activity would be the consequence of an increased formation of the product of ETOH oxidation, the acetaldehyde. This overproduction would not be accounted for by ADH. It is assumed that among others, the coupled reaction SOD-catalase would represent a possible alternate pathway.

Data on Drosophila demonstrate that initial tolerance to ETOH is well correlated with ADH activity. It is suggested that ETOH metabolites (mainly acetaldehyde) would act also as determinant of this initial tolerance. The value of Drosophila as animal model for the study of behavioral and biochemical correlates of initial tolerance is discussed.

Keywords

Aldehyde Dehydrogenase Biochemical Correlate ETOH Concentration ETOH Consumption Microsomal Ethanol Oxidize System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chance, B., Boveris, A. and Oshino, N., 1977, Peroxide generation in mitochondria and utilization by catalase, in: “Alcohol and Aldehyde Metabolizing Systems,” R. G. Thurman, J. R. Williamson, H. R. Drott and B. Chance, eds., Academic Press, New York.Google Scholar
  2. Chance, B., Sies, H. and Boveris, A., 1979, Hydroperoxide metabolism in mammalian organs, Physiol. Rev., 59:527.Google Scholar
  3. David, J. and Bocquet, C., 1976, Compared toxicities of different alcohols for two Drosophila sibling species: D. melanogaster and D. simulans, Comp. Biochem. Physiol., 54C:71.Google Scholar
  4. David, J. Fouillet, P. and Arens, M. F., 1974, Comparaison de la sensibilité à l’alcool éthylique de six espèces de Drosophila du sous-groupe melanogaster, Arch. Zool. Exp. Gén., 115:401.Google Scholar
  5. Deitrich, R. A. and Collins, A. C., 1977, Pharmacogenetics of alcoholism, in: “Alcohol and Opiates. Neurochemical and Behavioral Mechanisms,” K. Blum, Ed., Academic Press, New York.Google Scholar
  6. Garcin, F., 1979, Enzymatic ethanol metabolizing systems. Comparative studies in man, rat and Drosophila, in: “Proc. Int. Symp. on Metabolic Effects of Ethanol,” North-Holland Biomedical Press, Amsterdam.Google Scholar
  7. Harada, S., Misawa, S. Agarwal, D. and Goedde, H. W., 1979, Liver alcohol dehydrogenase in Japanese: isozyme variation and its possible role in alcohol intoxication, Am. J. Hum. Genetics.(in press)Google Scholar
  8. Hug, C. C., 1973, Characteristics and theories related to acute and chronic tolerance development, in: “Chemical and Biological Aspects of Drug Dependence,” S. J. Mulé and H. Brill, eds., CRC Press, Cleveland.Google Scholar
  9. Kalant, H., 1977, Biological models of alcohol tolerance and physical dependence, in: “Alcohol Intoxication and Withdrawal,” M. M. Gross, ed., Plenum Press, New York.Google Scholar
  10. Kalant, H., Le Blanc, A. E. and Gibbins, R. J., 1971, Tolerance to and dependence on some non-opiate psychotropic drugs, Pharmacol. Rev., 23: 135.Google Scholar
  11. Kock, O. R., Bartoli, G. M. and Galeotti, T., 1979, A suggested mechanism for hepatic lipid peroxidation induced by chronic ethanol ingestion, in: “Third Int. Symp. on Alcohol and Aldehyde Metabolizing Systems,” Abstract No. 25.Google Scholar
  12. Le Bourhis, B., 1977, Su l’éstablissement de la dépendance des rats à l’égard de l’alcool, Physiol. Behay., 18:475.Google Scholar
  13. Lieber, C. S. and De Carli, L. M., 1972, The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo, J. Pharmacol. Exp. Ther., 181:279.Google Scholar
  14. McKenzie, J. A., 1974, The distribution of vineyard populations of Drosophila melanogaster and Drosophila simulans during vintage and non-vintage periods, Oecologia (Berl.), 15: 1.Google Scholar
  15. McKenzie, J. A. and Parsons, P. S., 1972, Alcohol tolerance: an ecological parameter in the relative success of Drosophila melanogaster and Drosophila simulans, Oecologia (Berl.), 10: 373.Google Scholar
  16. Miceli, D. and Le Magen, J., 1979, Relations between metabolic and nervous tolerance toward ethanol in naive and chronically intoxicated rats, Pharmacol. Biochem. Behay. (in press)Google Scholar
  17. Pérusse, F., 1978, Etude comparative des paramètres comportementaux et métaboliques caractérisant la dépendance aux opiacés (morphine) et à l’alcool éthylique (éthanol) chez le rat naïf et dépendant à la morphine, Thèse M.Sc., Université Laval, Québec.Google Scholar
  18. Riley, E. P. and Lochry, E. A., 1977, Effects of initial tolerance on acquired tolerance to alcohol in two selectively bred rat strains, Drug Alc. Depend., 2:485.Google Scholar
  19. Sheppard, J. R., Albersheim, P. and McClearn, G., 1970, Aldehyde dehydrogenase and ethanol preference in mice, J. Biol. Chem., 245:2876.Google Scholar
  20. Smith, C. M., 1977, The pharmacology of sedative/hypnotics, alcohol and anesthetics: sites and mechanisms of action, in: “Drug Addiction 1: Morphine, Sedative, Hypnotic and Alcohol Dependence,” W. R. Martin, ed., Springer Verlag, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • P. Mandel
    • 1
    • 3
  • M. Ledig
    • 1
    • 3
  • B. Le Bourhis
    • 2
    • 3
  • Françoise Garcin
    • 3
  • S. Radouco-Thomas
    • 3
  • S. Chawla
    • 3
  • C. Radouco-Thomas
    • 3
  1. 1.Centre de Neurochimie du CNRSUniversite Louis PasteurStrasbourgFrance
  2. 2.IRABCréteilFrance
  3. 3.Unité de Recherche sur l’Abus des Drogues et de l’Alcool Hôpital St-Francois d’Assise et Départment de Pharmacologie Faculte de Medecine UniversitéLawalCanada

Personalised recommendations