Advertisement

The ATP Synthesizing System of Liver Mitochondria

  • Peter L. Pedersen
  • L. Mario Amzel
  • Nitza Cintrón
  • John W. Soper
  • Joanne Hullihen
  • Janna Wehrle

Abstract

Pathological states of the liver are numerous with prolonged alcohol consumption resulting in perhaps one of the most frequent. It seems quite appropriate, therefore, that a basic science workshop designed to review the current state of knowledge of liver metabolism includes a paper on the ATP synthesizing system of this tissue. Our laboratories were the first to isolate the ATP synthesizing system of liver (Catterall and Pedersen, 1971). A graduate student, William A. Catterall (now an Associate Professor of Pharmacology at the University of Washington, and an already well-known neurochemist), played a major role in these early studies (Catterall and Pedersen, 1971; Catterall and Pedersen, 1972; Catterall et al., 1973; Catterall and Pedersen, 1974). In the same year (1971) Henry Lardy’s laboratory also reported the isolation of the ATP synthesizing system of liver (Lambeth and Lardy, 1971). Since that time much additional information concerning the structure, function, and regulation of the ATP synthesizing system of liver mitochondria has accumulated in our laboratories. It is this information that I to summarize briefly today.

Keywords

Membrane Vesicle Liver Mitochondrion Nucleotide Binding Site Adenosine Triphosphatase ATPase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amzel, L. M. and Pedersen, P. L., 1978, Adenosine triphosphatase from rat liver mitochondria, crystallization and x-ray diffraction studies of the F1 component of the enzyme, J. Biol. Chem., 253: 2067–2069.PubMedGoogle Scholar
  2. Catterall, W. A. and Pedersen, P. L., 1971, Adenosine triphosphatase from rat liver mitochondria, I, purification, homogeneity, and physical properties, J. Biol. Chem., 246: 4987–4997.PubMedGoogle Scholar
  3. Catterall, W. A. and Pedersen, P. L., 1972, Adenosine triphosphatase from rat liver mitochondria, II, interaction with adenosine diphosphate, J. Biol. Chem., 247: 7969–7976.PubMedGoogle Scholar
  4. Catterall, W. A., Coty, W. A. and Pedersen, P. L., 1973, Adenosine triphosphatase from rat liver mitochondria, III, subunit composition, J. Biol. Chem., 248: 7427–7431.PubMedGoogle Scholar
  5. Catterall, W. A. and Pedersen, P. L., 1974, Structural and catalytic properties of mitochondrial adenosine triphosphatase, Biochem. Soc. Spec. Publ., 4: 63–88.Google Scholar
  6. Chan, T. L., Greenawalt, J. W. and Pedersen, P. L., 1970, Biochemical and ultrastructural properties of a mitochondrial inner membrane fraction deficient in outer membrane and matrix activities, J. Cell Biol., 45: 291 – 305.PubMedCrossRefGoogle Scholar
  7. Cintrón, N. M. and Pedersen, P. L., 1979, A protein inhibitor of the mitochondrial adenosine triphosphatase complex of rat liver, J. Biol. Chem., 254: 3439–3443.PubMedGoogle Scholar
  8. Cintrón, N. M. and Pedersen, P. L., 1979, “ATPase regulatory peptide” from rat liver mitochondria: purification and characterization, Fed Proc. Abs., 38: 456.Google Scholar
  9. Cintrón, N. M. and Pedersen, P. L., 1979, Protein inhibitor of the mitochondrial adenosine triphosphatase complex of rat liver - effect on nucleoside triphosphatase activity, energy-linked functions, and the kinetics of adenosine triphosphate hydrolysis, J. Biol. Chem., (in preparation).Google Scholar
  10. Hackenbrock, C. R. and Hammon, K. M., 1975, Cytochrome oxidase in liver mitochondria-distribution and orientation determined with affinity purified immunoglobulin and ferritin conjugates, J. Biol. Chem., 250: 9185–9197.Google Scholar
  11. Kagawa, Y., Sone, N., Yoshida, M., Hirata, H. and Okamoto, H., 1976, Proton translocating ATPase of thermophilic bacterium, morphology,subunits and chemical composition, J. Biochem., 80: 141 – 151.PubMedGoogle Scholar
  12. Kumar, G., Kalara, V. and Brodie, A., 1979, Affinity labelling of coupling factor-latent ATPase from Mycobacterium phlei with 2’, 3’-dialdehyde derivatives of adenosine 5’-triphosphate and adenosine 5’-diphosphate, J. Biol. Chem., 254: 1964–1971.PubMedGoogle Scholar
  13. Lambeth, D. O. and Lardy, H. A., 1971, Purification and properties of rat liver mitochondrial adenosine triphosphatase, Eur. J. Biochem., 22: 355–363.PubMedCrossRefGoogle Scholar
  14. Lardy, H. A., Schuster- S. M. and Ebel, R. E., 1975, Exploring sites on mitochondrial ATPase for catalysis, regulation, and inhibition, J. Supramol. Struct., 3: 214–221.Google Scholar
  15. Mitchell, P., 1966, in: “Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation,” Glynn Research Laboratories, Bodmin, Cornwall, England.Google Scholar
  16. Pedersen, P. L., 1975a, Mitochondrial adenosine triphosphatase, Bio-energetics, 6: 243 – 275.Google Scholar
  17. Pedersen, P. L., 1976, ATP-dependent reaction catalyzed by inner membrane vesicles of rat liver mitochondria, kinetics, substrate specificity, and bicarbonate sensitivity, J. Biol. Chem., 251: 934–940.PubMedGoogle Scholar
  18. Pedersen, P. L., Greenawalt, J. W., Reynafarje, B., Hullihen, J., Decker, G. L., Soper, J. W. and Bustamante, E., 1978a, Preparation and characterization of mitochondria and submitochondrial particles of rat liver and liver-derived tissues, Methods in Cell Biol., 20: 411 – 481.CrossRefGoogle Scholar
  19. Pedersen, P. L., Amzel, L. M., Soper, J. W., Cintrón, N. and Hullihen, J., 1978b, Structure, function, and regulation of the mitochondrial adenosine triphosphatase complex of rat liver-a progress report, in: “Energy Conservation in Biological Membranes,”Google Scholar
  20. G. Schafer and M. Klingenberg, eds., Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  21. Pedersen, P. L. and Hullihen, J., 1978a, Adenosine triphosphatase of rat liver mitochondria, capacity of the homogeneous F1 component of the enzyme to restore ATP synthesis in urea-treated membranes, J. Biol. Chem., 253: 2176–2183.PubMedGoogle Scholar
  22. Pedersen, P. L. and Hullihen, J., 1979, Resolution and reconstitution of ATP synthesis and ATP-dependent functions of liver mitochondria, Meth. Enzymol., Vol. LV: 736.Google Scholar
  23. Penefsky, H., 1967, Partial resolution of enzymes catalyzing oxidative phosphorylation, XVI, chemical modifications of mitochondrial adenosine triphosphatase, J. Biol. Chem., 242: 5795–5798.Google Scholar
  24. Schnaitman, C. A. and Greenawalt, J. W., 1968, Enzymatic properties of the inner and outer membranes of rat liver mitochondria, J. Cell Biol., 38: 158 – 175.PubMedCrossRefGoogle Scholar
  25. Soper, J. W., Decker, G. L. and Pedersen, P. L., 1979, Mitochondrial adenosine triphosphatase complex: a dispersed, cytochrome-deficient, oligomycinsensitive preparation from rat liver containing molecules with a tripartite structural arrangement, J. Biol. Chem., 254: 11170.PubMedGoogle Scholar
  26. Sottocasa, G. L., Kuylenstierna, B., Ernster, L. and Bergstrand, A., 1967, An electron transport system associated with the outer membrane of liver mitochondria, a biochemical and morphological study, J. Cell Biol. 38: 158 – 175.Google Scholar
  27. Steinmeier, R. C. and Wang, J. H., 1979, Reconstitution of oxidative phosphorylation by chemically modified coupling factor F1: differential inhibition of reactions catalyzed by F1-labeled with 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole or 2,3-butanedione, Biochemistry, 18: 11 – 18.PubMedCrossRefGoogle Scholar
  28. Steinweis, P. C., 1978, The c subunit of Escherichia coli coupling factor 1 is required for its binding to the cytoplasmic membrane, J. Biol. Chem., 253: 2133–3128Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Peter L. Pedersen
    • 1
  • L. Mario Amzel
    • 1
  • Nitza Cintrón
    • 1
  • John W. Soper
    • 1
  • Joanne Hullihen
    • 1
  • Janna Wehrle
    • 1
  1. 1.Laboratory for Molecular and Cellular Bioenergetics, Department of Physiological Chemistry and Department of BiophysicsThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations