Advertisement

Simulations of Polymers in Confined Geometries

  • K. Binder
  • K. Kremer

Abstract

The properties of flexible polymers moving inside porous structures are believed to be relevant to practical problems such as filtration, gel permeation chromatography, heterogeneous catalysis, oil recuperation, etc.1. Similarly the adsorption of macromolecules on interfaces plays an important rôle for problems such as adhesion, flocculation and stabilisation of colloid particles, biological membrane function, artificial organs in medicine, etc. 2. Aside from this eventual practical application, the configurational statistics of polymers in such confined geometries is a challenging problem of theoretical physics. The present brief review will be concerned with the study of a single long flexible linear macromolecule, consisting of N effective units of size ℓ, which may move inside a tube of diameter dT, or between two parallel planes a distance dT apart, or which is fixed at a flat impenetrable surface with one (or both) chain ends.

Keywords

Gyration Radius Chain Partition Real Space Renormalization Group Tetrahedral Lattice Confine Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Daoud and P.G. de Gennes, J. Phys.(Paris) 38: 85 (1977).Google Scholar
  2. 2.
    A. Takahashi and M. Kawaguchi, Adv. Polym. Sci. 46: 1 (1982).CrossRefGoogle Scholar
  3. 3.
    P.G. de Gennes, “Scaling concepts in polymer physics”, Cornell University Press, Ithaca (1979).Google Scholar
  4. 4.
    J.C. Le Guillou and J. Zinn-Justin, Phys. Rev. B21:3976 (1980);Google Scholar
  5. B. Nienhuis, Phys. Rev. Lett. 49: 1062 (1982).Google Scholar
  6. 5.
    L. Leger and P.G. de Gennes, Ann. Rev. Phys. Phys. Chem. 33: 49 (1982).CrossRefGoogle Scholar
  7. 6.
    L. Turban, J. Phys. (Paris) 45: 347 (1984).CrossRefGoogle Scholar
  8. 7.
    K. Kremer and K. Binder, J. Chem. Phys. 81: 6381 (1984).CrossRefGoogle Scholar
  9. 8.
    I. Webman and J.L. Lebowitz, J. Phys. (Paris) 41 (1980);Google Scholar
  10. A.T. Clark and M. Lal, J. Chem. Soc. Faraday Trans. Part II, 77: 981 (1981).Google Scholar
  11. 9.
    E. Eisenriegler, K. Kremer and K. Binder, J. Chem. Phys. 77: 6296 (1982).CrossRefGoogle Scholar
  12. 10.
    M.N. Barber, A.S. Guttmann, K.M. Middlemiss, G.M. Torrie and S.G. Whittington, J. Phys. A11:1833 (1978);CrossRefGoogle Scholar
  13. T. Ishinabe and S.G. Whittington, J. Phys. A14: 439 (1981).Google Scholar
  14. 11.
    H.W. Diehl and S. Dietrich, Phys. Lett. A80:408 (1980);Google Scholar
  15. Z. Phys. B42:65 (1981);Google Scholar
  16. Z. Phys. Phys. Rev. B24:2878 (1981);Google Scholar
  17. S. Dietrich and H.W.D ei hl, Z. Phys. B49: 315 (1981);Google Scholar
  18. J.S. Reeve and A. Guttmann, Phys. Rev. Lett. 45:1581 (1980);Google Scholar
  19. J.S. Reeve and A. Guttmann, J. Phys. A14:3357 (1981);Google Scholar
  20. J.S. Reeve, Phys. Lett. A 81: 237 (1981).Google Scholar
  21. 12.
    K. Binder, “Phase Transitions and Critical Phenomena”, ed. by C. Dowb and J.L. Lebowitz, Academic Press, New York (1938), Vol. 8, p. 1.Google Scholar
  22. 13.
    P.G. de Gennes and P. Pincus, J. Phys. (Paris) Lett. 44:L-241 (1983).Google Scholar
  23. 14.
    R.J. Rubin, J. Chem. Phys. 43: 2392 (1965).MathSciNetCrossRefGoogle Scholar
  24. 15.
    P.G. de Gennes, J. Phys. (Paris) 37:1445 (1967);Google Scholar
  25. P.G. de Gennes, Macromolecules 14: 1627 (1981).Google Scholar
  26. 16.
    T. Ishinabe, J. Chem. Phys. 76: 5589 (1982).CrossRefGoogle Scholar
  27. 17.
    K. Kremer, J. Phys. A16: 4333 (1983).Google Scholar
  28. 18.
    T. Ishinabe, J. Chem. Phys. 77, 3171 (1983).CrossRefGoogle Scholar
  29. 19.
    F. Brochard and P.G. de Gennes, J. Chem. Phys. 67, 52 (1977).CrossRefGoogle Scholar
  30. 20.
    P.G. de Gennes, J. Phys. (Paris) 42: 735 (1981).CrossRefGoogle Scholar
  31. 21.
    A. Takahashi, M. Kawaguchi, H. Hirota and T. Kato, Macromolecules 13: 884 (1983).CrossRefGoogle Scholar
  32. 22.
    M. Kawaguchi and A. Takahashi, Macromolecules 1: 1464 (1983).Google Scholar
  33. 23.
    E. Eisenriegler, J. Chem. Phys. 79:1052 (1983);Google Scholar
  34. E. Eisenriegler, J. Chem. Phys. 81:4666 (1984);Google Scholar
  35. K.F. Freed, J. Chem. Phys. 79:3121 (1981); A.M. Nemirovsky and K.F. Freed, preprints.Google Scholar
  36. 24.
    J. W. Cardy, preprint.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • K. Binder
    • 1
  • K. Kremer
    • 2
  1. 1.Institut für PhysikJohannes Gutenberg Universität MainzMainzFed. Rep. Germany
  2. 2.Exxon Research and EngineeringCorporate Science Lab.Clinton Township, AnnandaleUSA

Personalised recommendations