Advertisement

Geometry and Dynamics of Fractal Systems

  • Toshiya Ohtsuki
  • Thomas Keyes

Abstract

Recently physics of fractals has been one of the most exciting fields of science.l,2 A number of studies of percolation clusters, Sierpinski gaskets, lattice animals etc. have been reported and considerable interest has been generated in their anomolous behavior. On the basis of real-space renormalization group methods and/or scaling theories, we have investigated relation between geometrical structure and physical properties of fractal systems. As a result, it becomes evident that various types of critical phenomena are combined into a few universality classes and given unified geometrical interpretations.

Keywords

Critical Exponent Critical Phenomenon Fractal System Universality Class Percolation Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. B. Mandelbrot, “The Fractal Geometry of Nature”, Freeman, San Francisco (1982).MATHGoogle Scholar
  2. 2.
    M. F. Shlesinger, B. B. Mandelbrot and R. J. Rubin Eds., Proceedings of a Symposium on Fractals in the Physical Sciences, J. Stat. Phys. 36: Nos.5/6 (1984).Google Scholar
  3. 3.
    T. Ohtsuki and T. Keyes, J. Phys. A17: L495 (1984).MathSciNetGoogle Scholar
  4. 4.
    D. Stauffer, Phys. Rep. 54: 1 (1979).CrossRefGoogle Scholar
  5. 5.
    T. Ohtsuki and T. Keyes, J. Phys. A17: L267 (1984).MathSciNetGoogle Scholar
  6. 6.
    S. Alexander and R. Orbach, J. Phys. Lett. (Paris) 43: L625 (1982).CrossRefGoogle Scholar
  7. 7.
    Y. Gefen, A. Aharony and S. Alexander, Phys. Rev. Lett. 50: 77 (1983).CrossRefGoogle Scholar
  8. 8.
    R. Rammal and G. Toulouse, J. Phys. Lett. (Paris) 44: L13 (1983).CrossRefGoogle Scholar
  9. 9.
    T. Ohtsuki and T. Keyes, Phys. Rev. Lett. 52: 1177 (1984).CrossRefGoogle Scholar
  10. 10.
    C. K. Harris and R. B. Stinchcombe, Phys. Rev. Lett. 50: 1399 (1983).MathSciNetCrossRefGoogle Scholar
  11. 11.
    T. Ohtsuki and T. Keyes, J. Phys. A17: L137 (1984).MathSciNetGoogle Scholar
  12. 12.
    T. Ohtsuki and T. Keyes, J. Phys. C17: L317 (1984).MathSciNetGoogle Scholar
  13. 13.
    T. Keyes and T. Ohtsuki, submitted.Google Scholar
  14. 14.
    T. Ohtsuki and T. Keyes, Phys. Lett. 105A: 273 (1984).CrossRefGoogle Scholar
  15. 15.
    T. Ohtsuki and T. Keyes, J. Phys. A17: L559 (1984).MathSciNetGoogle Scholar
  16. 16.
    A. Coniglio and H. E. Stanley, Phys. Rev. Lett. 52: 1068 (1984).CrossRefGoogle Scholar
  17. 17.
    T. Ohtsuki and T. Keyes, J. Phys. C17: L645 (1984).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Toshiya Ohtsuki
    • 1
  • Thomas Keyes
    • 1
  1. 1.Department of ChemistryBoston UniversityBostonUSA

Personalised recommendations