Advertisement

Fractal Properties of “Disordered Surfaces” and The Termite Problem

  • H. Eugene Stanley
  • A. Bunde
  • A. Coniglio
  • D. C. Hong
  • P. Meakin
  • T. A. Witten

Abstract

In this second lecture, I shall turn to the topic of fractal surfaces, for which knowledge of only “the” fractal dimension df is not sufficient to describe the essential physics. In fact, we must distinguish between the entire external perimeter or “hull,” with its corresponding fractal dimension dh, and the unscreened portion of the external perimeter and its fractal dimension d. A very simple argument gives rise to an expression for du in terms of df and dp, the fractal dimension of the particles used to probe the surface. We shell see that the concept of the unscreened perimeter is at the heart of transport in a two-component random medium made up of superconductors and normal resistors. In particular, the exponent \(\tilde s = s/v\) for characterizing the divergence of the macroscopic conductivity at the percolation threshold pc is identically equal to du.

Keywords

Fractal Dimension Percolation Threshold Random Walk Model Percolation Cluster Cayley Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adam M, Delsanti M, Durand D, Hild G and Munch JP, 1981 Pure and Appl Chem 53 1489CrossRefGoogle Scholar
  2. Adler J, Aharony A and Stauffer D, 1985 J Phys A 18 L129CrossRefGoogle Scholar
  3. Aharony A and Stauffer D, 1984 Phys Rev Lett 52 2368CrossRefGoogle Scholar
  4. Alexander S, 1983 Ann Israel Phys Soc 5 149Google Scholar
  5. Ben-Avraham D and Havlin S, 1982 J Phys A 15 L691CrossRefGoogle Scholar
  6. Bunde A, Herrmann HJ, Margolina A and Stanley HE, 1985a Phys Rev Lett 55 653CrossRefGoogle Scholar
  7. Bunde A, Herrmann HJ and Stanley HE, 1985b J Phys A 18 L523CrossRefGoogle Scholar
  8. Bunde A, Coniglio A, Hong DC and Stanley HE, 1985c J Phys A 18 L137CrossRefGoogle Scholar
  9. Coniglio A and Stanley HE, 1984 Phys Rev Lett 52 1068CrossRefGoogle Scholar
  10. DeArcangelis L, Redner S and Coniglio A 1985 Phys Rev. B 31 4725CrossRefGoogle Scholar
  11. Donsker MD and Varadhan SRS, 1975 Comm Pure Appl Math 28 1, 279, 525CrossRefGoogle Scholar
  12. Family F and Vicsek T, 1985 J Phys A 18 L75CrossRefGoogle Scholar
  13. Fisher ME, Ma SK and Nickel B, 1972 Phys Rev Lett 29 917CrossRefGoogle Scholar
  14. Gefen Y, Aharony A and Alexander S, 1983 Phys Rev Lett 50 77CrossRefGoogle Scholar
  15. de Gennes PG, 1976 La Recherche 7 919Google Scholar
  16. de Gennes PG, 1980 J Phys (Paris) Colloq 41 C3 - C17MathSciNetCrossRefGoogle Scholar
  17. Halsey TC, Meakin P and Procaccia I ,1985 Phys Rev Lett (submitted)Google Scholar
  18. Havlin S, 1984 Phys Rev Lett 53 1705CrossRefGoogle Scholar
  19. Havlin S, Djordjevic Z, Majid I, Stanley HE and Weiss GH, 1984 Phys Rev Lett 53 178CrossRefGoogle Scholar
  20. Hemmer S and Hemmer PC, 1984 J Chem Phys 81 584MathSciNetCrossRefGoogle Scholar
  21. Herrmann HJ and Stanley HE 1985 Z Phys B 36 (1 Sept)Google Scholar
  22. Hong DC, Stanley HE, Coniglio A and Bunde A, 1985 Phys Rev B 32 xxxGoogle Scholar
  23. Jullien R and Botet R, 1985 Phys Rev Lett 54 2055CrossRefGoogle Scholar
  24. Kertèsz J, 1983 J Phys A 16 L471CrossRefGoogle Scholar
  25. Kremer K and Lyklema JW, 1984 J Phys A 17 L691CrossRefGoogle Scholar
  26. Kunz H and Souillard B, 1978 J Stat Phys 19 77MathSciNetCrossRefGoogle Scholar
  27. Leyvraz F, 1985 J Phys A 18 xxxGoogle Scholar
  28. Leyvraz F, Adler J, Aharony A, Bunde A, Coniglio A, Hong DC, Stanley HE and Stauffer D, 1985 J Phys A Lett 18 xxxGoogle Scholar
  29. Leyvraz F and Stanley HE 1983 Phys Rev Lett 51 2048CrossRefGoogle Scholar
  30. Majid I, Jan N, Coniglio A and Stanley HE, 1984 Phys Rev Lett 52 1257CrossRefGoogle Scholar
  31. Margolina A, Nakanishi H, Stauffer D and Stanley HE, 1984 J Phys A 17 1683CrossRefGoogle Scholar
  32. Meakin P and Sander LM, 1985 Phys Rev Lett 54 2053CrossRefGoogle Scholar
  33. Meakin P, Stanley HE, Coniglio A and Witten TA, 1985 Phys Rev A 32 (1 Oct)Google Scholar
  34. Peliti L 1984 J de Physique 45 L125Google Scholar
  35. Plischke M and Racz Z, 1984 Phys Rev Lett 53 415CrossRefGoogle Scholar
  36. Rammal R and Toulouse G, 1983 J de Physique 44 L13Google Scholar
  37. Sahimi M, 1985 J Phys A 18 1543MathSciNetCrossRefGoogle Scholar
  38. Sapoval B, Rosso M and Gouyet JF, 1985 J Physique Lett 46 L149CrossRefGoogle Scholar
  39. Stanley HE, Kang K,Redner S and Blumberg RL, 1983 Phys Rev Lett 51 1223MathSciNetCrossRefGoogle Scholar
  40. Stanley HE, Majid I, Margolina A and Bunde A, 1984 Phys Rev Lett 53 1706CrossRefGoogle Scholar
  41. Turkevich LA and Scher H, 1985 Phys Rev Let 55 xxxGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • H. Eugene Stanley
    • 1
  • A. Bunde
    • 1
  • A. Coniglio
    • 1
  • D. C. Hong
    • 1
  • P. Meakin
    • 2
  • T. A. Witten
    • 3
  1. 1.Center for Polymer Studies and Department of PhysicsBoston UniversityBostonUSA
  2. 2.Central Research and Development DepartmentE. I. DuPont de Nemours and CompanyWilmingtonUSA
  3. 3.Corporate Research Science LaboratoriesExxon Research and Engineering CompanyAnnandaleUSA

Personalised recommendations