Skip to main content

Growth of Domains and Scaling in the Late Stages of Phase Separation and Diffusion-Controlled Ordering Phenomena

  • Chapter
Scaling Phenomena in Disordered Systems
  • 363 Accesses

Abstract

These lectures consider the kinetics of phase changes, induced by a sudden change of external thermodynamic parameters. E.g., we treat a system with a second-order transition at a critical temperature Tc (Fig. 1, left part). For T0 > Tc the system is disordered, while for T < Tc there is an order parameter ± ψ (implying one-component orderings, e.g., an Ising model; later we discuss generalizations). We consider a “quenching experiment”: The system is brought from an initially disordered state at T0 to a state at T where in equilibrium the system should be orderedl. Since no sign of ψ is preferred, the system starts forming locally ordered regions of either sign, separated by domain walls. Due to the unfavorable interface free energy cost, this situation is not thermodynamically stable — there is a driving force to reduce this free energy. Thus the random motion of walls, induced by statistical fluctuations, leads to a growth of a characteristic length L(t) of the ordered regions with the time t after the sudden quench performed at t = 0. Typically, one expects L(t)ta for large t, and the excess internal energy ΔE(t)∝t-a a’ : a, a’ are the characteristic exponents of interest here. Sometimes even slower growth [L(t)∝lnt] might occur, see below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For an extensive recent review of this area, see J. D. Gunton, M. San Miguel and P. S. Sahni,in “Phase Transitions and Critical Phenomena”, Vol. 8, C. Domb and J. L. Lebowitz, Eds., Academic Press, New York (1983) p. 267.

    Google Scholar 

  2. For more detailed discussions of this point and earlier literature, see e.g. K. Binder, Phys. Rev A29:341 (1984) and in “Condensed Matter Research Using Neutrons”, S. W. Lovesey and R. Scherm, Eds., Plenum, New York (1984) p. I.

    Google Scholar 

  3. E.g., this has been seen in Monte-Carlo simulations (K. ‘Binder, Solid State Comm 34:191 (1980)) and experiments on phase-separating fluid mixtures (W. I. Goldburg, private communication).

    Google Scholar 

  4. D. W. Heermann, Z.Phys . B55: 309 (1984).

    Article  Google Scholar 

  5. K. Binder, Ann. Phys 98:390 (1976); R. Kretschmer, K. Binder and D. Stauffer, J..Stat. Phys 15:267 (1976). See also A. D. Bruce and D. J. Wallace, J. Phys A16:1721 (1983) and A. D. Bruce, preprints.

    Google Scholar 

  6. A. Coniglio and W. Klein, J. Phys A13: 2775 (1980).

    MathSciNet  Google Scholar 

  7. C.-K. Hu, Phys. Rev B29: 5103 (1984).

    Article  Google Scholar 

  8. K. Binder and D. Stauffer, Phys. Rev. Lett 33:1006 (1974).

    Google Scholar 

  9. K. Binder, Phys. Rev B15:4425 (1977).

    Google Scholar 

  10. K. Binder, C. Billotet and P. Mirold, Z. Phys B30:183 (1978); P. Mirold and K. Binder, Acta met 25:1435 (1977).

    Google Scholar 

  11. C. Billotet and K. Binder, Z. Phys B32: 195 (1979).

    Google Scholar 

  12. K. Binder, in “Stochastic Nonlinear Systems in Physics, Chemistry and Biology”, L. Arnold and R. Lefever, eds., Springer, Berlin (1981) p. 62.

    Google Scholar 

  13. H. Furukawa, Progr. Theor 59:1072 (1978); Phys. Lett 66A:60 (1978); 97A:346 (1983).

    Google Scholar 

  14. H. Furukawa, Phys. Rev. Lett 43:136 (1979); Phys. Rev A23:1535 (1981); A28:1717 (1983).

    Google Scholar 

  15. P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys 49:435 (1977).

    Google Scholar 

  16. A. Sadiq and K. Binder, J. Statis Phys. 35:617 (1984); Phys. Rev. Lect 51:674 (1983).

    Google Scholar 

  17. G. S. Grest and P. S. Sahni, Phys. Rev B30: 226 (1984).

    Article  Google Scholar 

  18. F. G. Mazenko and 0. T. Valls, Phys. Rev. Lett 51:2044 (1983).

    Google Scholar 

  19. G. F. Mazenko, 0. T. Valls and F. C. Zhang, to be published.

    Google Scholar 

  20. J. D. Gunton, J. Stat. Phys 34: 1019 (1984).

    Article  MathSciNet  Google Scholar 

  21. K. Kawasaki and T. Ohta, Progr. Theor. Phys 59:361 (1978).

    Google Scholar 

  22. E. Siggia, Phys. Rev A20:595 (1979).

    Google Scholar 

  23. G. F. Mazenko and M. Zannetti, Phys. Rev. Lett 53:21Q6 (1984).

    Google Scholar 

  24. J. K. Bhattacharjee, P. Meakin and D. J. Scalapino, Phys. Rev A30:1026 (1984).

    Google Scholar 

  25. G. S. Grest, D. J. Srolovitz and M. P. Anderson, Phys. Rev. Lett 52:1321 (1984).

    Google Scholar 

  26. G. Mouritsen, Phys. Rev. B (1985); B28:3150 (1983) and preprint.

    Google Scholar 

  27. P. S. Sahni, G. S. Grest, M. P. Anderson and D. J. Srolovitz, Phys. Rev. Lett 50:263 (1983); Phys Rev. B28:2705 (1983); K. Kaska J. Nierinen and J. D. Gunton, preprint; see also D. J. Srolovitz, M. P. Anderson, P. S. Sahni and G. S. Grest, Acta met 32: 783 (1984).

    Google Scholar 

  28. F. Y. Wu, Rev. Mod. Phys 54:235 (1982).

    Google Scholar 

  29. I. M. Lifshitz, Sov. Phys. JETP 15:939 (1962).

    Google Scholar 

  30. S. A. Safran, Phys. Rev. Lett 46:1581 (1981).

    Google Scholar 

  31. For the Ising model of a binary mixture at the critical concentration ccrit = 1/2, such frozen-in structures were first studied by P. PB Meakin and S. Reich, Phys. Lett. A92, 247 (1982) and by A. Levy, S. Reich and P. Meakin, Phys. Lett. 78A (1982).

    Google Scholar 

  32. J. Villain, Phys. Rev. Lett 52:1543 (1984); G. Grinstein and J. F. Fernandex, Phys. Rev B29:389 (1984).

    Google Scholar 

  33. D. Stauffer, C. Hartzstein, K. Binder and A. Aharony, Z. Phys B55:325 (1984). However, E. Pytte and J. F. Fernandez (Phys. Rev B31:616 (1985)) do find L(t) = Int.

    Google Scholar 

  34. C. Rottman and M. Wortis, Phys. Rev B24:6274 (1981); R. K. P. Zia and J. E. Avron, Phys. Rev 1352:2042 (1982); J. E. Avron, L. S. Schulman, H. van Beijeren and R. K. P. Zia, J. Phys A15:L81 (1982); R. K. P. Zia, preprint.

    Google Scholar 

  35. J. R. Simon, P. Guyot and A. Fhilarducci de Salva, Phil. Mag A49:151 (1984).

    Google Scholar 

  36. P. A. Rikvold and J. D. Gunton, Phys. Rev. Lett 49 (1982).

    Google Scholar 

  37. K. Tokuyama and K. Kawasaki, Physica 123A:386 (1984); T. Ohta, preprint.

    Google Scholar 

  38. P. W. Vvorhees and M. E. Glicksman, Acta met. (1984); J. A. Marqusee and J. Ross, J. Chem Phys. 80: 536 1984 ).

    Google Scholar 

  39. S. W. Allen and J. W. Cahn, Acta met. 27:1017 (1979); 27: 1085 (1979).

    Google Scholar 

  40. K. Kawasaki, M. C. Yalabik and J. D. Gunton, Phys. Rev A17:455 (1978).

    Google Scholar 

  41. T. Ohta, D. Gamow and K. Kawasaki, Phys. Rev. Lett 49:1223 (1982).

    Google Scholar 

  42. I. Ohta, ref. 37; M. Grant and J. D. Gunton, Phys. Rev B38: 5496 (1983); K. Kawasaki and T. Ohta, Progr. Theor. Phys 67:142 (1982).

    Google Scholar 

  43. G. F. Mazenko, Phys. Rev B26:5103 (1982); G. F. Mazenko and 0. T. Valls, Phys. Rev B27:6811 (1983); G. F. Mazenko and 0. T. Valls, Phys:. Rev. B30:6732 (1984); F. C. Chang, 0. T. Valls and G. F. Mazenko, preprInt.

    Google Scholar 

  44. Note that this statement refers to domain growth in a system with a second-order transition. If one quenches to a metastable regime underneath a first-order transition, one rather finds L(t) a t (S. K. Chan, J. Chem. Phys 67:5755 (1977)).

    Google Scholar 

  45. M. K. Phani, J. L. Lebowitz, M. H. Kalos and 0. Penrose, Phys. Rev. Lett 45:366 (1980).

    Google Scholar 

  46. P. S. Sahní, G. Dee, J. D. Gunton, M. K. Phaní, J. L. Lebowitz and M. H. Kalos, Phys. Rev B24: 410 (1981).

    Article  Google Scholar 

  47. K. Kaski, M. D. Yalabík, J. D. Gunton and P. S. Sahni, Phys Rev. B28:5263 (1983); E. T. Gawlinski, M. Grant, J. D. Gunton and K. Kaski, Phys. Rev B31:281 (1985).

    Google Scholar 

  48. Y. C. Chou and W. I. Goldburg, Phys Rev. A23: 858 (1981).

    Article  Google Scholar 

  49. J. Marro, J. L. Lebowitz and M. H. Kalos, Phys. Rev Lett. 43: 282 (1979).

    Article  Google Scholar 

  50. J. L. Lebowitz, J. Marro and M. H. Kalos, Acta met. 30: 297 (1982).

    Article  Google Scholar 

  51. P. Fratzl, J. L. Lebowitz, J. Marro and M.s, Acta met 31: 1849 (1983).

    Article  Google Scholar 

  52. F. F. Abraham, S. W. Koch and R. C. Desai, Phys. Rev. Lett 49:923 (1982); S. W. Koch, R. C. Desai and F. F. Abraham, Phys. Rev A27:2152 (1983); S. W. Koch and R. Liebmann, J. Statist. Phys 33:31 (1983).

    Google Scholar 

  53. P. S. Salmi and J. D. Gunton, Phys. Rev. Lett 45:368 (1980); K. Kaski and J. D. Gunton, Phys. Rev. B28:5371 (1983); K. Kaski, M. Grant and J. D Gunton, preprint-`; K. Kaski, S. Kumar, J. D. Gunton and P. A. Rikvold, Phys. Rev B29:4420 (1984); K. Kaski, T. Ala-Nissila and J. D. Gunton, Phys. Rev B31:310 (1985).

    Google Scholar 

  54. J. S. Langer and A. J. Schwartz, Phys. Rev A21:948 (1980).

    Google Scholar 

  55. H. L. Snyder and P. A. Meakín, J. Chem Phys. 79: 5588 (1983).

    Article  Google Scholar 

  56. H. Furukawa, Phys. Rev A30:1052 (1984); A29:2160 (1984) and preprints.

    Google Scholar 

  57. K. Binder and M. H. Kalos, J. Stat. Phys 22:363 (1980).

    Google Scholar 

  58. S. Katano and M. Iízumi, Phys. Rev Lett. 52:835 (1984).

    Google Scholar 

  59. A. B. Bortz, M. H. Kalos, J. L. Lebowitz and M. A. Zendejas, Phys. Rev B10:535 (1974).

    Google Scholar 

  60. J. Marro, A. B. Bortz, M. H. Kalos and J. L. Lebowitz, Phys. Rev B12:2000 (1975).

    Google Scholar 

  61. M. Rao, M. H. Kalos, J. L. Lebowitz and J. Marro, Phys Rev. B13: 4328 (1976).

    Article  Google Scholar 

  62. A. Sur, J. L. Lebowitz, J. Marro and M. H. Kalos, Phys. Rev B15: 3014 (1978).

    Article  Google Scholar 

  63. K. Kawasaki, in “Phase Transitions and Critical Phenomena”, Vol. 2, C. Domb and M. S. Green, Eds., Academic Press, London (1972) p. 443.

    Google Scholar 

  64. C. M. Knobler and N. C. Wong, J. Phys. Chem 85:1972 (1981).

    Google Scholar 

  65. M. Hennion, P. Guyot and D. Ronzaud, Acta met 30:599 (1982); P. Guyot, preprint.

    Google Scholar 

  66. S. Komura, K. Osamura, H. Fujií and T. Takeda, Phys. Rev B30:2944 (1984).

    Google Scholar 

  67. A. Craivich and J. M. Sanchez, Phys. Rev. Lett 47:1308 (1981).

    Google Scholar 

  68. Blaschko, G. Ernst, P. Fratzl, M. Bernole and P. Auger, Acta met 30:547 (1982).

    Google Scholar 

  69. P. Guyot and J.P. Simon, in “Solid-solid phase transformations”, H. I. Aaronson, D. E. Laughlus, R. F. Sekeka and C. M. Wayman, Eds., American Institute of Metals (1982) p. 325.

    Google Scholar 

  70. S. Komura, K. Osamura, H. Fujii and T. Takeda, Physica 120B:397 (1983); G. Kosterz, Physica 120B:387 (1983); S. Katano and M. Iizumí, J. Phys. Soc. Japan 51:347 (1982); Physica 120B:302 (1983).

    Google Scholar 

  71. D. N. Sinha and J.K. Hoffer, Physica 107B: 155 (1981).

    Google Scholar 

  72. I. M. Lifshitz and V. V. Slyozov, J. Phys Chem. Solids 19:35 (1961); see also W. Wagner, Z. Elektro Chem 65:581 (1961).

    Google Scholar 

  73. E. Stoll, K. Binder and T. Schneider, Phys. Rev B6:2777 (1972).

    Google Scholar 

  74. K. Binder and E. Stoll, Phys Rev. Lett. 31:47 (1973); K. Binder and H. Müller-Krumbhaar, Phys. Rev B9: 3228 (1974).

    Google Scholar 

  75. H. Müller-Krumbhaar and E. Stoll, J. Chem. Phys. 65: 4294 (1976).

    Google Scholar 

  76. D. Stauffer, A. Coniglio and D. W. Heermann, Phys. Rev. Lett. 49: 1299 (1982).

    Article  Google Scholar 

  77. R. Dickman and W. C. Schieve, Physica 112A: 51 (1982).

    Article  MathSciNet  Google Scholar 

  78. J. Marro and R. Toral, Physíca 122A: 563 (1983).

    Google Scholar 

  79. G. Jacuccí, A. Perini and G. Martin, J. Phys. A16: 369 (1983).

    Google Scholar 

  80. Penrose, J. L. Lebowitz, J. Marro, M. H. Kalos and A. Sur, J. Stat. Phys. 19:243 (1978); M. H. Kalos, J. L. Lebowitz, 0. Penrose and A. Sur, J. Stat. Phys 18:39 (1978).

    Google Scholar 

  81. H. Müller-Krumbhaar, Phys. Lett. A50: 27 (1974).

    Article  Google Scholar 

  82. In ref. 7, active and inaacctiive bonds are also introduced ím the other component and then there is need to consider clusters of both types, nt and nil. By this approach the symmetry of the disordered phase at cB = cgrit above Tc is ensured.

    Google Scholar 

  83. D. W. Heermann, A. Coniglio, W. Klein and D. Stauffer, J. Stat. Phys 36:447 (1984).

    Google Scholar 

  84. D. W. Heermann and W. Klein, Phys. Rev. Lett 50:1962 (1983); Phys. Rev. B27:1732 (1983).

    Google Scholar 

  85. D. W. Heermann, to be published.

    Google Scholar 

  86. M. von Smoluchowski, Phys. Z 17:593 (1916); S. Chandrasekhar, Rev. Mod. Phys 15:1 (1943).

    Google Scholar 

  87. R. L. Drake, in “Topics in Current Aerosol Research”, G. M. Hidy and G. R. Brock, Eds., Vol. 3, Pergamon, New York (1972) p. 201.

    Google Scholar 

  88. S. K. Friedlander, J. Meteorology 17:479 (1960); 753 (1961); S. K. Friedlander and C. S. Wang, J. Coll. Interface Sci 22:126 (1966); S. K. Friedlander, Phys. Fluids 3:693 (1970); J. Pich, S. K. Friedlander and F. S. Lai, Aerosol Sci 1:115 (1970); C. S. Wang and S. K. Friedlander, J. Coll. Interface Sc. 24:170 (1967); S. K. Friedlander, “Smoke, Dust and Haze”, Wiley, New York (1977).

    Google Scholar 

  89. G. M. Hidy and J. R. Brock, “The Dynamics of Aerocolloidal Systems”, Pergamon Press, New York (1970).

    Google Scholar 

  90. F. Leyvraz, Phys. Rev A29:854 (1984); F. Leyvraz and H. R.’Tschudi., J. Phys A14:3389 (1981); 15=.1951 (1982); F. Leyvraz, J. Phys A16:1861 (1983).

    Google Scholar 

  91. R. M. Ziff, E. M. Hendriks and M. H. Ernst, Phys. Rev. Lett 49:593 (1982); E. M. Hendríks, M. H. Ernst and R. M. Ziff, J. Stat. Phys. 31:519 (1983); R. M. Ziff, J. Stat. Phys 23:241 (1980).

    Google Scholar 

  92. T. Vicsek and F. Family, in “Kinetics of Aggregation and Gelation, F. Family and D.P. Landau, Eds., North-Holland, Amsterdam (1984) p. 101; P. Meakin, T. Vicsek and F. Family, Phys. Rev B31:564 (1985); T. Vicsek and F. Family, Phys Rev. Lett. 52:1661 (1984); K. Kang and S. Redner, Phys. Rev A30:2833 (1984).

    Google Scholar 

  93. R. Jullien, M. Kolb and R. Botet, in “Kinetics of Aggregation and Gelation”, F. Family and D. P. Landau, Eds., North-Holland, Amsterdam (1984); M. Kelle, R. Botet and R. Jullien, Phys. Rev. Lett 51:1123 (1983); R. Botet, R. Jullien and M. Kolb, J. Phys A17:175 (1984); M. Kolb, preprint.

    Google Scholar 

  94. A. C. Zettlemoyer, ed., “Nucleation”, Marcel Dekker, New York (1969).

    Google Scholar 

  95. K. Binder and D. Stauffer, Adv. Phys 25:343 (1976).

    Google Scholar 

  96. D. Stauffer, Phys. Repts 54 (1979).

    Google Scholar 

  97. M. E. Fisher, Physics 3: 255 (1967).

    Google Scholar 

  98. For reviews of older experimental data, see ref. 1 and W. I. Goldburg, in “Scattering Techniques Applied to Supramolecular and Nonequilibrium Systems”, S. H. Chen, B. Chu and R. Nossal, Eds., Plenum, New York (1981) p. 383.

    Google Scholar 

  99. J. S. Langer, M. Baron and H. D. Miller, Phys. Rev. A11: 1417 (1975).

    Article  Google Scholar 

  100. B. B. Mandelbrot, “The Fractal Geometry off Nom, Freeman, San Francisco (1982).

    Google Scholar 

  101. D. W. Heermann and K. Binder, to be published.

    Google Scholar 

  102. M. Kahlweit, Adv. Coll. Interface Sci 5:1 (1975).

    Google Scholar 

  103. Another effect relevant for late stages is the possible loss of coherence of precipitated clusters with the host lattice, due to building of strong elastic distortions and resulting grain-boundary formation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Binder, K., Heermann, D.W. (1991). Growth of Domains and Scaling in the Late Stages of Phase Separation and Diffusion-Controlled Ordering Phenomena. In: Pynn, R., Skjeltorp, A. (eds) Scaling Phenomena in Disordered Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1402-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1402-9_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1404-3

  • Online ISBN: 978-1-4757-1402-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics