Binary Fluid Phase Separation in Gels: A Neutron Scattering Study

  • S. K. Sinha
  • J. Huang
  • S. K. Satija


Over the past ten years there has been a considerable amount of interest, both theoretical as well as experimental, in the effects of random fields on phase transitions, in particular, the Random Field Ising model (RFIM). Initially, the crucial issue seems to have been the lower critical dimensionality dc of RFIM1. In the literature arguments have been given in support of dc being equal to either 2 or 3 (see references 1, 2 and 3 for recent reviews of RFIM). However, recently it has been realized that, experimentally, RFIM systems get trapped in a nonegyilibrium state which relaxes very slowly, if at all, towards equilibrium4. In recent theoretical papers, Villain5 and Bruinsma and Aeppli6 have come to the conclusion that for d<5, the random field prevents the growth of an ordered state when the system is quenched to low temperatures from the paramagnetic regime.


Random Field Correlation Length Binary Fluid Neutron Scattering Study Random Field Ising Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Grinstein, J. Appl. Phys. 55: 2371 (1984).CrossRefGoogle Scholar
  2. 2.
    J. Villain, B. Semeria, F. Lancon and L. Billard, J. Phys. C16: 6153 (1983).Google Scholar
  3. 3.
    Y. Imry, J. Stat. Phys. 34: 849 (1984).CrossRefGoogle Scholar
  4. 4.
    P-Z. Wong, J. W. Cable and P. Dimon, J. Appl. Phys. 55: 2377 (1984).CrossRefGoogle Scholar
  5. 5.
    J. Villain, Phys. Rev. Lett. 52: 1543 (1984).CrossRefGoogle Scholar
  6. 6.
    R. Bruinsma and G. Aeppli, Phys. Rev. Lett. 52: 1547 (1984).CrossRefGoogle Scholar
  7. 7.
    M. Hagen, R. A. Cowley, S. K. Satija, H. Yoshizawa, G. Shirane, R. J. Birgeneau and H. J. Guggenheim, Phys. Rev. B28: 2602 (1983).Google Scholar
  8. 8.
    S. Fishman and A. Aharony, J. Phys. C12: L729 (1979).Google Scholar
  9. 9.
    J. V. Maher, W. I. Goldburg, D. W. Pohl and M. Lanz, Phys. Rev. Lett. 53: 60 (1984).CrossRefGoogle Scholar
  10. 10.
    P. G. de Gennes, J. Phys. Chem. (1985).Google Scholar
  11. 11.
    A. Stein et al., J. Chem. Phys. 56: 6164 (1972).CrossRefGoogle Scholar
  12. 12.
    W. Goldburg (previous paper).Google Scholar
  13. 13.
    D. P. Belanger, A. R. King and V. Jaccarino, Phys. Rev. Lett. 54: 577 (1985).CrossRefGoogle Scholar
  14. 14.
    E. Pytte, Y. Imry and D. Mukamel, Phys. Rev. Lett. 43: 808 (1979).CrossRefGoogle Scholar
  15. 15.
    H. S. Kogon and D. J. Wallace, J. Phys. A14: L527 (1981).MathSciNetGoogle Scholar
  16. 16.
    T. Tanaka, S. Ishivata and C. Ishimoto, Phys. Rev. Lett 38: 771 (1977).CrossRefGoogle Scholar
  17. 17.
    P. Debye, H. R. Anderson and H. Brumberger, J. Appl. Phys. 28: 679 (1957).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • S. K. Sinha
    • 1
  • J. Huang
    • 1
  • S. K. Satija
    • 2
  1. 1.Corporate Research Science LaboratoriesExxon Research and EngineeringAnnandaleUSA
  2. 2.Physics DepartmentUniversity of DelawareNewarkUSA

Personalised recommendations