Mixed Valence Chemistry and Metal Chain Compounds

Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 7)


In 1896 Alfred Werner1 began to investigate what, at that time, were thought to be two isomeric forms of sodium bis-oxalatoplatinite. The curious feature which attracted Werner’s attention to these compounds was that while one was pale yellow, the other was copper red. He was soon able to show that they were not actually isomers at all, and that the yellow salt, which had the formula Na2Pt(C204)22H20, could be converted into the red one only by partly oxidizing it with chlorine or bromine water. He also noted several other examples of platinum salts which likewise existed in ’airs, one member being a simple divalent compound such as (Pt)K or (PtCy4)K2 — to use his nomenclature — the other derivable Tram the first by partial oxidation. In every case the divalent compound was pale in colour while the partly oxidized one was very dark, frequently copper coloured, with the appearance of a metallic reflector: Werner had discovered the class of mixed valence platinum chain compounds about which so much has been written in the last few years, and whose properties form one of the principal topics of this Advanced Study Institute.


Prussian Blue Tungsten Bronze Charge Fluctuation Chain Compound Class IlIA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Werner, Z. anorg. Chem. 12, 46 (1896).CrossRefGoogle Scholar
  2. 2.
    W. Knop, Ann. Chem. 43, 111 (1842).CrossRefGoogle Scholar
  3. 3.
    I. Bernal, E.A.V. Ebsworth and J.A. Weil, Proc. Chem. Soc.,57 (1959).Google Scholar
  4. 4.
    J.H. de Boer and E.J.W. Verwey, Rec. Tray. Chim., 541 (1936).Google Scholar
  5. 5.
    E.J.W. Verwey, P.W. Haaijmann, F.C. Romeijn and G.W. van Oosterhout, Philips Res. Rep. 173 (1950).Google Scholar
  6. 6.
    L.S. Miller, S. Howe and W.E. Spear, Phys. Rev. 166, 871 (1968).CrossRefGoogle Scholar
  7. 7.
    R.E. Peierls, ‘Quantum Theory of Solids, Oxford University Press, London, 1955, p. 108.Google Scholar
  8. 8.
    F. Sondheimer, D.A. Ben-Efraim and R. Wolovsky, J. Amer. Chem. Soc. 83, 1675 (1961).CrossRefGoogle Scholar
  9. 9.
    S.S. Malhotra and M.C. Whiting, J. Chem. Soc. 3812 (1960).Google Scholar
  10. 10.
    M.B. Robin and P. Day, Adv. Inorg. Chem. and Radiochem. 10, 247 (1967).CrossRefGoogle Scholar
  11. 11.
    C. Creutz and H. Taube, J. Amer. Chem. Soc. 21, 3988 (1969).CrossRefGoogle Scholar
  12. 12.
    D.O. Cowan, C. Levanda, J. Park and F. Kaufman, Acc. Chem. Res. 6, 1 (1973); U.T. Mueller-Westerhoff and P. Eilbracht, J. Amer. Chem. Soc. 24, 9272 (1972).Google Scholar
  13. 13.
    I.G. Austin and N.F. Mott, Science 168, 71 (1970).CrossRefGoogle Scholar
  14. 14.
    N.S. Hush, Prog. Inorg. Chem. 8, 391 (1967).Google Scholar
  15. 15.
    B. Mayoh and P. Day, J. Amer. Chem. Soc. 24, 2885 (1972).CrossRefGoogle Scholar
  16. 16.
    T. Holstein, Ann. Phys. (N.Y.), 8, 343 (1959).CrossRefGoogle Scholar
  17. 17.
    M.K. Fayek and J. Leciejewicz, Z. anorg. Chem. 336, 104 (1965)•Google Scholar
  18. 18.
    D. Rogers and A.C. Skapski, Proc. Chem. Soc., 400 (1964).Google Scholar
  19. 19.
    D. Cahen and J.E. Lester, Chem. Phys. Lett. 18, 108 (1973); J. McGilp, Part II Thesis, Oxford, 1973.Google Scholar
  20. 20.
    G.W. Watt and R.E. McCarley, J. Amer. Chem. Soc. 32, 4585 (1957).CrossRefGoogle Scholar
  21. 21.
    For a review see D.S. Martin, Inorg. Chim. Acta Rev. 2, 107 (1971).Google Scholar
  22. 22.
    S. Yamada and R. Tsuchida, Bull. Chem. Soc. Japan, 22, 894 (1956).CrossRefGoogle Scholar
  23. 23.
    T.D. Ryan and R.E. Rundle, J. Amer. Chem. Soc. 83, 2814 (1961).CrossRefGoogle Scholar
  24. 24.
    P.W. Anderson, Phys. Rev. T2= 350 (1950).Google Scholar
  25. 25.
    B. Mayoh and P. Day, J.C.S. Dalton Trans.846 (1974).Google Scholar
  26. 26.
    B. Mayoh and P. Day, Inorg. Chem. 13, 2273 (1974).CrossRefGoogle Scholar
  27. 27.
    T.W. Thomas and A.E. Underhill, J. Chem. Soc. A, 512 (1971).Google Scholar
  28. 28.
    L.V. Interante, K.W. Browall and F.P. Bundy,Google Scholar
  29. 29.
    H.G. Drickamer, C.W. Frank and C.P. Slichter, Proc. Nat. Acad. Sci. U.S.A., 62, 933 (1972).CrossRefGoogle Scholar
  30. 30.
    K. Krogmann and H.D. Hausen, Z. anorg. Chem. 12, 67 (1968).Google Scholar
  31. 31.
    M.A. Butler, D.L. Rousseau and D.W.E. Buchanan, Phys. Rev. B 1, 61 (1973).CrossRefGoogle Scholar
  32. 32.
    W. Ruegy, D. Kuse and H.R. Zeller, Phys. Rev. B 8, 952 (1973).CrossRefGoogle Scholar
  33. 33.
    D. Kuse and H.R. Zeller, Phys. Rev. Lett. E, 1060 (1971).Google Scholar
  34. 34.
    H.R. Zeller, Festkorperprobleme, 13, 31 (1973).Google Scholar
  35. 35.
    B. Renker, H. Reitschel, L. Pintschovius, W. Glaser, P. Bruesch, D. Kuse and H.R. Zeller, Phys. Rev. Lett. 30, 1144 (1973).CrossRefGoogle Scholar
  36. 36.
    B. Renker, L. Pintschovius, W. Glaser, H. Rietschel, R. Comes, L. Liebert and W. Drexel, Phys. Rev. Lett. 32, 836 (1974).CrossRefGoogle Scholar
  37. 37.
    J.H. Dieseroth and H. Schultz, Phys. Rev. Lett. 33, 961 (1974).Google Scholar
  38. 38.
    D. Griffiths, P. Day, C.J. Sampson and F.A. Wedgwood, Sclid State Comm., in press.Google Scholar
  39. 39.
    A. Magneli, Acta Cryst. 6, 495 (1953).CrossRefGoogle Scholar
  40. 40.
    L. Kihlborg, Adv. Chem. Ser. 32, 37 (1963).Google Scholar
  41. 41.
    R. Norin, Acta Chem. Scand. 20, 871 (1966).CrossRefGoogle Scholar
  42. 42.
    L. Kihlborg, Arkiv. Kemi 21, 471 (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • P. Day
    • 1
  1. 1.Oxford UniversityInorganic Chemistry LaboratoryOxfordEngland

Personalised recommendations