Tread Compound Effects in Tire Traction



Changes in practical compounds have given appreciable improvements in friction on wet surfaces but only minor improvements on dry or icy surfaces. The wet skid resistance of a tread compound is determined primarily by its hardness and hysteresis. Improvements in skid resistance are usually made with a concurrent, predictable, loss in wear resistance for practical compounds. Tire materials research devotes its efforts to development of factors which will permit gains in traction with minimal losses in wear. A typical tire compound is examined for the effects of the ingredients on improvements in wet traction, i.e., raising the glass transition temperature of the polymer or the extender oil, increasing the fineness of the carbon black, and lowering the level of curatives.


Wear Resistance Glass Transition Temperature Natural Rubber Poly Butadiene Rubber Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.J. Allbert and J.C. Walker, rubber Chemistry and Technology, 41, p. 753, 1968.CrossRefGoogle Scholar
  2. S.J. Allbert and J.C. Walker, Proceedings Institute of Mechanical Engineers (Automobile Division) 180, 2A, p. 105, 1965-66.CrossRefGoogle Scholar
  3. 2.
    ASTM Test E303-66 T.Google Scholar
  4. 3.
    C. G. Giles, B. E. Sabey and K. H. F. Cardew, Rubber Chemistry and Technology, 38, p. 840, 1965.CrossRefGoogle Scholar
  5. 4.
    H. W. Kummer, Rubber Chemistry and Technology, 41, p. 895, 1968.CrossRefGoogle Scholar
  6. 5.
    E. P. Percarpio and E. M. Bevilacqua, Rubber Chemistry and Technology, 41, p. 810, 1968, and succeeding papers.Google Scholar
  7. 6.
    E. Clamroth and W. Heidemann, Rubber Chemistry and Technology, 41, p. 908, 1968.CrossRefGoogle Scholar
  8. 7.
    R. N. Kienle, E. S. Dizon, T. J. Brett, and C. F. Eckert, Rubber Chemistry and Technology, 44. p. 996, 1971.CrossRefGoogle Scholar
  9. 8.
    K. H. Nordsiek, Kautschuk und Gummi, 25, p. 87, 1972.Google Scholar
  10. 9.
    R. C. Keller, Tire Science and Technology, 1, p. 190, 1973.CrossRefGoogle Scholar
  11. 10.
    R. Peterson, Jr., Uniroyal unpublished work.Google Scholar
  12. 11.
    F. M. MacMillan, in M. Morton, ed., “Introduction to Rubber Technology,” p. 162, Reinhold, 1959.Google Scholar
  13. 12.
    C. F. Eckert, Uniroyal unpublished work.Google Scholar
  14. 13.
    A. R. Payne, in G. Kraus, “Reinforcement of Elastomers,” Interscience, p. 112, 1965.Google Scholar
  15. 14.
    B. B. Boonstra and E. M. Dannenberg, Rubber Chemistry and Technology, 22, p. 774, 1956.CrossRefGoogle Scholar
  16. 15.
    S. G. Main and R. J. Kirschbaum, Presentation to the Southern Ohio Rubber Group, Dayton, O., April 6, 1973.Google Scholar
  17. 16.
    H. E. Haxo, Uniroyal unpublished work.Google Scholar
  18. 17.
    C.E. Scott and V.M. Chirico, Paper #18, Division of Rubber Chemistry, 94th Meeting, September 10–13, 1968.Google Scholar
  19. 18.
    R. R. Hegemon and J. J. Henry, Wear, 24, p. 361 1973.CrossRefGoogle Scholar
  20. 19.
    W. Viehmann, Rubber Chemistry and Technology, 31, p. 925, 1958.CrossRefGoogle Scholar
  21. 20.
    W. Gnorich and K. A. Grosch, Journal I.R.I., p. 192, 1972.Google Scholar
  22. 21.
    E. Southern and R. W. Walker, Nature Physical Science, 237, p. 142, 1972.Google Scholar
  23. 22.
    K. A. Grosch, Rubber Age, 99, p. 63, 1967.Google Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  1. 1.UNIROYAL Research CenterMiddleburyUSA

Personalised recommendations