Electron Correlation and Activated Hall Mobility

  • C. J. Adkins


Experiments with inversion layers show clearly that the Hall mobility becomes activated at low temperatures when the carrier concentration is low. After a brief account of the inversion layer system, the observed behaviour of the Hall effect and the conductivity is described. Neither is consistent with independent particle mobility-edge and percolation models. It is shown that electron correlation must be important at low carrier densities, and the electron liquid model is described, according to which, when correlation is dominant, the carriers become localized in the Wigner and flow past the background disorder like a viscous liquid. It is suggested that correlation must always dominate sufficiently close to any metal-insulator transition so that activated Hall mobility should generally be observable in low carrier density systems at low temperatures.


Carrier Concentration Hall Effect Hall Mobility Inversion Layer Percolation Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrahams, E., Anderson, P. W., Licciardello, D. C., and Ramakrishnan, T. V., 1979, Phys. Rev. Lett., 42: 673.ADSCrossRefGoogle Scholar
  2. Adkins, C. J., 1978a, J. Phys. C., 11:851.ADSCrossRefGoogle Scholar
  3. Adkins, C. J., 1978b, Phil. Mag. B, 38:535.CrossRefGoogle Scholar
  4. Adkins, C. J., 1979a, J. Phys. C., 12:3389.ADSCrossRefGoogle Scholar
  5. Adkins, C. J., 1979b, J. Phys. C., 12:3395.ADSCrossRefGoogle Scholar
  6. Adkins, C. H., Pollitt, S., and Pepper, M., 1976, J. de Phys., 37: C4–343.Google Scholar
  7. Allen, S. J., Tsui, D. C., and DeRosa, F., 1975, Phys. Rev. Lett., 35: 1359.ADSCrossRefGoogle Scholar
  8. Arnold, E., 1974, Appl. Phys. Lett., 25: 705.ADSCrossRefGoogle Scholar
  9. Arnold, E., 1976, Surf. Sci., 58: 60.ADSCrossRefGoogle Scholar
  10. Davis, E. A., and Compton, W. D., 1965, Phys. Rev. A, 140: 2183.ADSGoogle Scholar
  11. Fowler, A. B., 1975, Phys. Rev. Lett., 34: 15.ADSCrossRefGoogle Scholar
  12. Holstein, T., 1961, Phys. Rev., 124: 1329.ADSMATHCrossRefGoogle Scholar
  13. Juretschke, H. J., Landauer, R., and Swanson, J. A., 1956, J. Appl. Phys., 27: 836.ADSCrossRefGoogle Scholar
  14. Katayama, Y., Narita, K., Skiraki, Y., Aoki, M., and Komatsubara, K. F., 1977, J. Phys. Soc. Japan, 42: 1632.ADSCrossRefGoogle Scholar
  15. Licciardello, D. C., and Thouless, D. J., 1975, J. Phys. C., 8: 4157.ADSCrossRefGoogle Scholar
  16. Mott, N. F., 1966, Phil. Mag., 13: 689.CrossRefGoogle Scholar
  17. Mott, N. F., 1967, Adv. Phys., 16: 49.ADSCrossRefGoogle Scholar
  18. Mott, N. F., Pepper, M., Pollitt, S., Wallis, R. H., and Adkins, C. J., 1975, Proc. Roy. Soc. A, 345: 169.ADSCrossRefGoogle Scholar
  19. Pepper, M., 1977, Proc. Roy. Soc. A, 353: 225.ADSCrossRefGoogle Scholar
  20. Sjöstrand, M. E., and Stiles, P. J., 1975, Solid State Comm., 16: 903.ADSCrossRefGoogle Scholar
  21. Stern, F., 1973, Phys. Rev. Lett., 30: 278.ADSCrossRefGoogle Scholar
  22. Tabor, D., 1968, “Gases, Liquids and Solids,” Penguin Books, pp. 230-232.Google Scholar
  23. Thompson, J. P., 1978, Phys. Lett., 66A: 65.ADSGoogle Scholar
  24. Tsui, D. C., and Allen, S. J., 1974, Phys. Rev. Lett., 32:1200.ADSCrossRefGoogle Scholar
  25. Tsui, D. C., and Allen, S. J., 1975, Phys. Rev. Lett., 34:1293.ADSCrossRefGoogle Scholar
  26. Wigner, E. P., 1939, Phys. Rev., 46: 1002.ADSCrossRefGoogle Scholar
  27. Zallen, R., and Scher, H., 1971, Phys. Rev. B, 4: 4471.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • C. J. Adkins
    • 1
  1. 1.Cavendish LaboratoryCambridgeUK

Personalised recommendations