Skip to main content

Overview of Analytical Methods for Phospholipid Studies

  • Chapter
Book cover Phospholipids

Abstract

It is now firmly recognized that phospholipids (PL) are important biologically active mediators of signal transduction within the cell and also between cells. These findings have completely modified the earlier notion that phospholipids were merely involved structurally in the hydrophobic core of cellular membranes and responsible for excitability of neural and muscular tissue, or served as eicosanoid precursors of prostaglandins and leukotrienes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitzetmuller, K., 1982, Recent progress in the high performance liquid chromatography of lipids, Prog. Lipid Res., 21:171–194.

    Article  PubMed  CAS  Google Scholar 

  2. Alvarez, J.G., Levin, S.S., Kleinbart, S., Storey, B.T., and Touchstone, J.C., 1987, Characterization of phosphoglycerides by chemical and enzymatic hydrolysis on thin layer plates in situ, J. Liq. Chromatogr., 10:1687–1705.

    Article  CAS  Google Scholar 

  3. Alvedano, M.I. and Bazan, N.G., 1975, Differential lipid deacylation during brain ischemia in a homeotherm and a poikilotherm. Content and composition of free fatty acids and triacylglycerols, Brain Res., 100:99–110.

    Article  Google Scholar 

  4. Ames, B., 1966, Assay of inorganic phosphate, total phosphate and phosphatases, in: “Methods in Enzymology”, S.P. Colowick and N.O. Kaplan, eds, Vol 8, Academic Press, New York, pp. 115–117.

    Google Scholar 

  5. Andreesen, P., Modolell, M., Oepke, G.H.F., Common, H., Lohr, G.W. and Munder, P.G., 1982, Studies on various parameters influencing leukemic cell destruction by alkyl-lysophospholipids, Anticancer Res., 2:95–103.

    PubMed  CAS  Google Scholar 

  6. Barany, M. and Glonek, T., 1984, Identification of diseased states by P-31 NMR in: “Phosphorus-31 NMR: Principles and Applications,” D. Gorenstein, ed., Academic Press, New-York, pp. 511–545.

    Google Scholar 

  7. Bartlett, G.R., 1969, Phosphorus assay in column chromatography, J. Biol. Chem., 234:466–472.

    Google Scholar 

  8. Batty, I.R., Nahorski, S.R. and Irvine, R.F., 1985, Rapid formation of inositol 1,3,4,5, tetrakisphosphate folowing muscarinic receptor stimulation of rat cerebral cortical slices, Biochem. J., 232:211–215.

    PubMed  CAS  Google Scholar 

  9. Bell, M.E., Peterson, R.G. and Eichberg, J., 1982, Metabolism of phospholipids in peripheral nerve from rats with chronic streptozotocin-induced diabetes: increased turnover of phosphatidylinositol-4,5-biphosphate, J. Neurochem., 39:192–200.

    Article  PubMed  CAS  Google Scholar 

  10. Benedetti, A., Pompella, A., Fulceri, R., Romani, A. and Comporti, M., 1986, Detection of 4-hydroxynonenal and other lipid peroxidation products in the liver of bromobenzene-poisoned mice, Biochim. Biophys. Acta, 876:658–666.

    Article  PubMed  CAS  Google Scholar 

  11. Benveniste, J., Cochrane, C.G. and Henson, P.M., 1972, Leukocytedependent histamine release from rabbit platelets: the role of IgE, basophils and a platelet-activating factor, J. Exp. Med., 136:1356–1359.

    Article  PubMed  CAS  Google Scholar 

  12. Berdel, W.E., Griner, E., Fink, U., Stavrou, D., Reichert, A., Rastetter, J., Hoffman, D.R. and Snyder, F., 1981, Cytotoxicity of alkyl-lysophospholipid derivatives and lyso-alkyl-cleavage enzyme activities in rat brain tumor cells, Cancer Res., 43:541–553.

    Google Scholar 

  13. Berridge, M.J. and Irvine, R.F., 1984, Inositol triphosphate, a novel second messenger in cellular signal transduction, Nature, 312:315–321.

    Article  PubMed  CAS  Google Scholar 

  14. Blank, M.L. and Snyder, F., 1983, Improved high-performance liquid Chromatographic method for isolation of plateletactivating factor from other phospholipids, J. Chromatogr., 273:415–420.

    Article  PubMed  CAS  Google Scholar 

  15. Blank, M.L., Robinson, M., Fitzgerald, V. and Snyder, F., 1984, Novel quantitative method for determination of molecular species of phospholipids and diglycerides, J. Chromatogr., 298:473–482.

    Article  PubMed  CAS  Google Scholar 

  16. Bligh, E.G. and Dyer, W.J., 1959, A rapid method of total lipid extraction and purification, Can. J. Biochem Physiol., 37:911–917.

    Article  PubMed  CAS  Google Scholar 

  17. Buege, J.A. and Aust, S.D., 1978, Microsomal lipid peroxidation, in: “Methods in Enzymology”, Vol 52, S. Fleischer and L. Packer, eds., Academic Press, New York, pp.302–310.

    Google Scholar 

  18. Cantafora, A., Di Biase, A., Alvaro, D., Angelico, M., Marin, M. and Attili, A.F., 1983, High performance liquid Chromatographic analysis of molecular species of phosphatidylcholine-development of quantitative assay and its application to human bile, Clin. Chim. Acta, 134:281–295.

    Article  PubMed  CAS  Google Scholar 

  19. Cenedella, R.J., Galli, C. and Paoletti, R., 1975, Brain free fatty acids levels in rats sacrificed by decapitation versus focused microwave-irradiation, Lipids, 10:290–293.

    Article  PubMed  CAS  Google Scholar 

  20. Charlesworth, J.M., 1978, Evaporative analyzer as a mass detector for liquid chromatography, Anal. Chem., 50:1414–1420.

    Article  CAS  Google Scholar 

  21. Chen, S.S.H. and Kou, A.Y., 1982, Improved procedure for the separation of phospholipids by high-performance liquid chromatography, J. Chromatogr., 227:25–31.

    Article  PubMed  CAS  Google Scholar 

  22. Chignard, M., LeCouedic, J.P., Tence, M., Vargaftig, B.B. and Benveniste, J., 1979, The role of platelet-activating factor in platelet aggregation, Nature, 279:799–800.

    Article  PubMed  CAS  Google Scholar 

  23. Christie, W.W., 1985, Rapid separation and quantification of lipid classes by high performance liquid chromatography and mass (light scattering) detection, J. Lipid Res. 26:507–512.

    PubMed  CAS  Google Scholar 

  24. Christie, W.W., 1986, Separation of lipid classes by high-performance liquid chromatography with the “mass detector”, J. Chromatogr., 361:396–399.

    Article  PubMed  CAS  Google Scholar 

  25. Christie, W.W. and Hunter, M.L., 1985, Separation of molecular species of phosphatidylcholine by high-performance liquid chromatography on a PLRP-S column, J. Chromatogr., 325:473–476.

    Article  PubMed  CAS  Google Scholar 

  26. Christie, W.W. and Morrison, W.R., 1988, Separation of complex lipids of cereals by high-performance liquid chromatography with mass detection, J. Chromatogr., 383:511–513.

    Google Scholar 

  27. Crawford, C.G., Plattner, R.D., Sessa, D.J. and Rackis, J.J., 1980, Separation of oxidized and unoxidized molecular species of phosphatidylcholine by high pressure liquid chromatography, Lipids. 15:91–94.

    Article  CAS  Google Scholar 

  28. Creba, J.A., Downes, C.P., Hawkins, P.T., Brewster, G., Michell, R.H. and Kirk, C.J., 1983, Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-biphosphate in rat hepatocytes stimulated by vasoproessin and other Ca++-mobilizing hormones, Biochem. J. 212:733–747.

    PubMed  CAS  Google Scholar 

  29. Creer, M.H. and Gross, R.W., 1985, Separation of isomeric lysophospholipids by reverse phase HPLC, Lipids. 20:922–928.

    Article  PubMed  CAS  Google Scholar 

  30. Dawson, R.M.C., 1967, Analysis of phosphatides and glycolipids by chromatography of their partial hydrolysis or alcoholysis products, in: “Lipid Chromatographic Analysis”, Vol 1, Marinetti, G.V., ed., Marcel Dekker, New York, pp.163–189.

    Google Scholar 

  31. Dean, N.M., and Moyer, J.D., 1987, Separation of multiple isomers of inositol phosphates formed in GH3 cells, Biochem. J., 242:361–366.

    PubMed  CAS  Google Scholar 

  32. Del Maestro, R. F., 1980, An approach to free radicals in medicine and biology, Acta Physiol. Scand. suppl., 492:153–168.

    PubMed  Google Scholar 

  33. Dembitski, V.M., 1988, Quantification of plasmalogen, alkylacyl and diacylglycerophospholipids by micro-thin-layechromatography, J. Chromatogr., 436:467–473.

    Article  Google Scholar 

  34. Dixon, J.F. and Hokin, L.E., 1987, Inositol 1, 2-cyclic 4,5-triphosphate concentration relative to inositol 1,4,5-trisphosphate in pancreatic minilobules on stimulation with carbamylcholine in the absence of lithium, J. Biol. Chem., 262:13892–13895.

    PubMed  CAS  Google Scholar 

  35. Dugan, L.L., Demediuk, P., Pendley, II, C.E. and Horrocks, L.A., 1986, Separation of phospholipids by high-performance liquid chromatography: all major classes, including ethanolamine and choline plasmalogens, and most minor classes, including lysophosphatidylethanolamine, J. Chromatogr., 378:317–327.

    Article  PubMed  CAS  Google Scholar 

  36. Downes, C.P. and Wusteman, M.M., 1983, Breakdown of polyphosphoinositides and not phosphatidylinositol accounts for muscarinic agonist-stimulated inositol phospholipid metabolism in rat parotid glands, Biochem. J., 216:633–640.

    PubMed  CAS  Google Scholar 

  37. Ellingson, J.S. and Zimmerman, R.L., 1987, Rapid separation of gram quantities of phospholipids from biological membranes by preparative high performance liquid chromatography, J. Lipid Res., 28:1016–1018.

    PubMed  CAS  Google Scholar 

  38. El Tamer, A., Record, M., Fouvel, J., Chap, H. and Douste-Blazy, L., 1984, Studies on ether phospholipids. 1. A new method of determination using phospholipase-Al from guinea-pig pancreas. Application to Krebs-II Ascites-cells, Biochim. Biophys. Acta, 793:213–222.

    Article  PubMed  CAS  Google Scholar 

  39. Fewster, M.E., Burns, B.J. and Mead, J.F., 1969, Quantitative densitometric thin-layer chromatography of lipids using copper acetate reagent, J. Chromatogr., 43:120–128.

    Article  PubMed  CAS  Google Scholar 

  40. Fine, J.B. and Sprecher, H., 1982, Unidimensional thin-layer chromatography of phospholipids on boric acid-impregnated plates, J. Lipid. Res., 23:660–663.

    PubMed  CAS  Google Scholar 

  41. Fisher, S.K. and Agranoff, B.W., 1987, Receptor activation and inositol lipid hydrolysis in neural tissues, J. Neurochem., 48:999–1017.

    Article  PubMed  CAS  Google Scholar 

  42. Foglia, T.A., Vail, P.D. and Iwama, T., 1987, High performance liquid Chromatographic analysis of 1-alkyl-2-acyl-and 1-alkyl-3-acyl-sn-glycerols, Lipids, 22:362–365.

    Article  CAS  Google Scholar 

  43. Folch-Pi, J., Lees, M., and Sloane-Stanley, G.H., 1957, A simple method for the isolation and purification of total lipids fromn animal tissues, J. Biol. Chem., 226:497–509.

    CAS  Google Scholar 

  44. Fowler, S.D., Brown, W.J., Warfeld, J. and Greenspan, P., 1987, Use of nile red for the rapid in situ quantitation of lipids on thin-layer chromatograms, J. Lipid Res., 28:1225–1232.

    PubMed  CAS  Google Scholar 

  45. Gamache, D.A., Fawzy, A.A. and Franson, R.C., 1988, Preferential hydrolysis of peroxidized phospholipid by lysosomal phospholipase C., Biochim. Biophvs. Acta, 958:116–124.

    Article  CAS  Google Scholar 

  46. Geurts van Kessel, W.S.M., Hax, W.M.A., Demel, R.A. and De Gier, J., 1977, High performance liquid Chromatographie separation and direct ultraviolet detection of phospholipids, Biochim. Biophys. Acta, 486:524–530.

    Article  CAS  Google Scholar 

  47. Gonzalez-Sastre, P. and Folch-Pi, J., 1968, Thin-layer chromatography of the phosphoinositides, J. Lipid Res., 9:532–535.

    PubMed  CAS  Google Scholar 

  48. Goppelt, M. and Resch, K., 1984, Densitometric quantitation of individual phospholipids from natural sources separated by one-dimensional thin-layer chromatography, Anal. Biochem., 140:152–156.

    Article  PubMed  CAS  Google Scholar 

  49. Gross, R.W. and Sobel, B.E., 1980, Isocratic high-performance liquid chromatography separation of phosphoglycerides and lysophosphoglycerides, J. Chromatogr., 197:79–85.

    Article  PubMed  CAS  Google Scholar 

  50. Gustavsson, L., 1986, Densitometric quantification of individual phospholipids. Improvement and evaluation of a method using molybdenum blue reagent for detection, J. Chromatogr., 375:255–266.

    Article  PubMed  CAS  Google Scholar 

  51. Hanahan, D.J., Demopoulos, C.A., Liehr, J. and Pinckard, R.N., 1980, Identification of platelet-activating factor from rabbit basophils as acetyl glycerylether phosphorylcholine, J. Biol. Chem., 255:5514–5521.

    PubMed  CAS  Google Scholar 

  52. Hanson, V.L., Park, J.Y., Osborn, T.W. and Kiral, R.M., 1981, High-performance liquid Chromatographic analysis of egg yolk phospholipids, J. Chromatogr., 205:393–400.

    Article  PubMed  CAS  Google Scholar 

  53. Hara, A., and Radin, N., 1978, Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem., 90:420–426.

    Article  PubMed  CAS  Google Scholar 

  54. Harman, D., 1982, Free radical theory of aging, in: “Free Radicals in Biology,” Vol. 5, W.A. Pryor, ed., Academic Press, New York, pp. 258–276.

    Google Scholar 

  55. .Harrington, CA., Fenimore D.C. and Eichberg, J., 1980, Fluorometric analysis of polyunsaturated phosphatidylinositol and other phospholipids in the picomole range using high-performance thin-layer chromatography. Anal. Biochem. 106:307–311.

    Article  PubMed  CAS  Google Scholar 

  56. Hauser, G. and Eichberg, J., 1973, Improved conditions for the preservation and extraction of polyphosphoinositides, Biochim. Biophvs. Acta. 326:201–204.

    Article  CAS  Google Scholar 

  57. Hawkins, P.T, Stephens, L. and Downes, C.P., 1986, Rapid formation of inositol 1,3,4,5-tetrakisphosphate and inositol 1,3,4-tris phosphate in rat parotid glands may both result indirectly from receptor-stimulated release of inositol 1,4,5-trisphosphate from phosphatidylinositol 4,5-biphosphate, Biochem J. 238:507–517.

    PubMed  CAS  Google Scholar 

  58. Heape, A.M., Juguelin, H., Boiron, F. and Cassagne, C., 1985, Improved one-dimensional thin-layer Chromatographie technique for polar lipids, J. Chromatogr., 322:391–396.

    Article  PubMed  CAS  Google Scholar 

  59. Henderson, T.O., Glonek, T. and Myers, T.C., 1974, Phosphorus-31 nuclear magnetic resonance spectroscopy of phospholipids, Biochemistry. 13:623–628.

    Article  PubMed  CAS  Google Scholar 

  60. Hicks, M. and Gebicki, J.M., 1979, A spectrophotometric method for the determination of lipid hydroperoxides, Anal. Biochem., 99:249–253.

    Article  PubMed  CAS  Google Scholar 

  61. Hokin, L.E., 1985, Receptors and phosphoinositide-generated second messengers, Ann. Rev. Biochem., 54:205–35.

    Article  PubMed  CAS  Google Scholar 

  62. Hokin, M.R. and Hokin, L.E., 1953, Enzyme secretion and the incorporation of 32P into phospholipides of pancreas slices, J. Biol. Chem. 203:967–974.

    PubMed  CAS  Google Scholar 

  63. Horrocks, L.A., 1968, The alk-1-enyl group content of mammalian myelin phosphoglycerides by quantitative two-dimensional thinlayer chromatography, J. Lipid Res. 9:469–475.

    PubMed  CAS  Google Scholar 

  64. Horrocks, L.A., Yeo, Y.Y., Harder, H.W., Mozzi, R. and Goracci, G., 1986, Choline plasmalogens, glycerophospholipid methylation, and receptor-mediated activation of adenylate cyclase, Adv. Cyclic Nucleotide Protein Phosphorvlation Res., 20:263–270.

    CAS  Google Scholar 

  65. Horrocks, L.A., Dugan, L.L., Flynn, C.J., Goracci, G., Porcellati, S. and Young, Y., 1987, Modern techniques for the fractionation and purification of phospholipids from biological materials in: “Lecithin: Technological, Biological and Therapeutic Aspects”, Hanin, I. and Ansell G.B., eds., Plenum Press, New York, pp. 3–16.

    Google Scholar 

  66. Irvine, R.F., Letcher, A.J., Meade, C.J. and Dawson, R.M., 1984, One-dimensional thin-layer Chromatographic separation of the lipids involved in arachidonic acid metabolism, J. Pharmacol. Methods. 12:171–175.

    Article  PubMed  CAS  Google Scholar 

  67. Ishii, H., Connolly, T.M., Bross, T.E. and Majerus, P.W., 1986, Inositol cyclic triphosphate [inositol 1,2-(cyclic)-4,5-triphosphate] is formed upon thrombin stimulation of human platelets, Proc. Natl. Acad. Sci. U.S.A. 83:6397–6401.

    Article  PubMed  CAS  Google Scholar 

  68. Jackson, E.M., Mott, G.E., Hoppens, C., McManus, L.M., Weintraub, S.T., Ludwig, J. and Pinckard, R.N., 1984, High performance liquid chromatography of platelet-activating factors, J. Lipid Res., 25:753–757.

    PubMed  CAS  Google Scholar 

  69. Jones, M., Keenan, R.W. and Horowitz, P., 1982, Use of 6-p-toluidino-2-naphthalenesulfonic acid to quantitate lipid after thin-layer chromatography, J. Chromatogr., 237:522–524.

    Article  CAS  Google Scholar 

  70. Juaneda, P. and Rocquelin, G., 1985, Rapid and convenient separation of phospholipids and non phosphorus lipids from rat heart using silica cartridges, Lipids, 20:40–41.

    Article  PubMed  CAS  Google Scholar 

  71. Jungalwala, F.B., 1985, Recent developments in techniques for phospholipid analysis, in: “Phospholipids in Nervous Tissues,” Eichberg, J., ed., John Wiley and Sons, New York, pp. 1–44.

    Google Scholar 

  72. Jungalwala, F.B., Hayssen, V., Pasquini, J.M. and McCluer, R.H., 1979, Separation of molecular species of sphingomyelin by reversed-phase high-performance liquid chromatography, J. Lipid Res., 20:579–587.

    PubMed  CAS  Google Scholar 

  73. Jungalwala, F. B., Sanyal, S., and LeBaron, F., 1982, Use of HPLC to determine the turnover of molecular species of phospholipids, in: “Phospholipids in the Nervous System,” Vol 1, Metabolism, L. Horrocks, G.B. Ansell, G. Porcellati, eds., Raven Press, New York, pp. 91–103.

    Google Scholar 

  74. Kaduce, T.L., Norton, K.C. and Spector, A.A., 1983, A rapid, isocratic method for phospholipid separation by high-performance liquid chromatography, J. Lipid Res., 24:1398–1403.

    PubMed  CAS  Google Scholar 

  75. Kaitaranta, J.K. and Bessman, S.P., 1981, Determination of phospholipid by a combined liquid chromatography-automated phosphorus analyser, Anal. Chem. 53:1232–1240.

    Article  CAS  Google Scholar 

  76. Kaluzny, K.A.Q., Duncan, L.A., Merritt, M.V. and Epps, D.E., 1985, Rapid separation of lipid classes in high yield and purity using bonded phase columns, J. Lipid Res., 26:135–140.

    PubMed  CAS  Google Scholar 

  77. Kaschnitz, R.M. and Hatefi, Y., 1975, Lipid oxidation in biological membranes, Arch. Biochem. Biophys., 171:292–304.

    Article  PubMed  CAS  Google Scholar 

  78. Kennerly, D.A., 1987, Molecular species analysis of lysophospholipids using high-performance liquid chromatography and argentation thin-layer chromatography, J. Chromatogr., 409:291–297.

    Article  PubMed  CAS  Google Scholar 

  79. Kito, M., Takamura, H., Narita, H. and Urade, R., 1985, A sensitive method for quantitative analysis of phospholipid molecular species by HPLC. J. Biochem. 98:327–331.

    PubMed  CAS  Google Scholar 

  80. Knight, J.A., Smith, S.E., Kinder, V.E. and Pieper, R.K., 1988, Urinary lipoperoxides quantified by liquid chromatography and determination of reference values for adults, Clin. Chem., 34:1107–1110.

    PubMed  CAS  Google Scholar 

  81. Kolarovic, L., and Traitler, H., 1985, The application of gradient saturation in unidimensional planar chromatography of polar lipids. Part 1: Presentation of the HPLC system, J. High Resolut. Chromatogr. Chromatogr. Comm., 8:341–346.

    Article  CAS  Google Scholar 

  82. Kolarovic, L., and Fournier, N.C., 1986, A comparison of extraction methods for the isolation of phospholipids from biological sources, Anal. Biochem., 156:244–250.

    Article  PubMed  CAS  Google Scholar 

  83. Korte, K. and Casey, M.L., 1982, Phospholipid and neutral lipid separation by one-dimensional thin-layer chromatography, J. Chromatogr. 232:47–53.

    Article  PubMed  CAS  Google Scholar 

  84. Kuhnz, W., Zimmermann, B. and Nau, H., 1985, Improved separation of phospholipids by high-performance liquid chromatography, J. Chromatogr. 344:309–312.

    Article  PubMed  CAS  Google Scholar 

  85. Kuksis, A., ed., 1987, “Chromatography of Lipids in Biomedical Research and Clinical Diagnosis”, J. Chromatogr. Libr. Vol 37, Elsevier, Amsterdam.

    Google Scholar 

  86. Lang J., Celotto, C. and Esterbauer, H., 1985, Quantitative determination of the lipid peroxidation product 4-hydroxynonenal by high-performance liquid chromatography, Anal. Biochem. 150:369–378.

    Article  PubMed  CAS  Google Scholar 

  87. Ledwozyw, A., Michalak, J., Stepien, A. and Kadziolka, A., 1986, The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis, Clin. Chim. Acta 155:275–284.

    Article  PubMed  CAS  Google Scholar 

  88. London, E. and Feigenson, G.W., 1979, Phosphorus NMR analysis of phospholipids in detergents, J. Lipid Res., 20:408–412.

    PubMed  CAS  Google Scholar 

  89. Macala, L.J., Yu, R.K. and Ando, S., 1983, Analysis of brain lipids by high performance thin-layer chromatography and densitometry, J. Lipid Res., 24:1243–1250.

    PubMed  CAS  Google Scholar 

  90. Meerson, F.Z., Kagan, V.E., Kozlov, Y.P., Belkina, L.M. and Arkhipenko, Y.V., 1982, The role of lipid peroxidation in pathogenesis of ischemic damage and the antioxidant protection of the heart, Basic Res. Cardiol. 77:465–485.

    Article  PubMed  CAS  Google Scholar 

  91. Meneses, P. and Glonek, T., 1988, High resolution 31P NMR of extracted phospholipids, J. Lipid Res. 29:679–689.

    PubMed  CAS  Google Scholar 

  92. Nakagawa, Y. and Horrocks, L.A., 1983, Separation of alkenylacyl, alkylacyl, and diacyl analogues and their molecular species by high performance liquid chromatography, J. Lipid Res., 24:1268–1281.

    PubMed  CAS  Google Scholar 

  93. Nelson, G. J., 1975, “Analysis of Lipids and Lipoproteins”, E.G. Perkins, ed, Amer. Oil Chem. Soc., Champaign, IL.

    Google Scholar 

  94. Nishizuka, Y., 1986, Studies and perspectives of protein kinase C., Science, 233:305–312.

    Article  PubMed  CAS  Google Scholar 

  95. Oishi, K., Raynor, R.L., Charp, P.A. and Kuo, J.F., 1988, Regulation of protein kinase C by lysophospholipids, J. Biol. Chem., 263:6865–6871.

    PubMed  CAS  Google Scholar 

  96. Patton, G.M., Fasulo, J.M. and Robins, S.J., 1982, Separation of phospholipids and individual molecular species of phospholipids by high-performance liquid chromatography, J. Lipid Res., 23:190–196.

    PubMed  CAS  Google Scholar 

  97. Petitou, M., Tuy, F. and Rosenfeld, C., 1978, A simplified procedure for organic phosphorus determination from phospholipids, Anal. Biochem., 91:350–353.

    Article  PubMed  CAS  Google Scholar 

  98. Poorthuis, B.J.H.M., Yazaki, P.J. and Hostetler, K.Y., 1976, An improved two-dimensional thin-layer chromatography system for the separation of phosphatidyl glycerol and its derivatives, J. Lipid Res., 17:433–437.

    PubMed  CAS  Google Scholar 

  99. Porter, N.A., Wolf, R.A. and Nixon, J.R., 1979, Separation and purification of lechithins by high pressure liquid chromatography, Lipids, 14:20–24.

    Article  CAS  Google Scholar 

  100. Porter, N.A., Wolf, R.A. and Weenen, H., 1980, The free radical oxidation of polyunsaturated lecithins, Lipids, 15:163–167.

    Article  CAS  Google Scholar 

  101. Priebe, S.R. and Howell, J.A., 1985, Post-column reaction detection system for the determination of organophosphorus compounds by liquid chromatographpy, J. Chromatogr., 324:53–63.

    Article  PubMed  CAS  Google Scholar 

  102. Pucsok, J., Kovacs, L., Zalka, A. and Dobo, R., 1988, Separation of lipids by new thin-layer chromatography and overpressured thin-layer chromatography methods, Clin. Biochem., 21:81–85.

    Article  PubMed  CAS  Google Scholar 

  103. Quinn, M.T., Parthasarathy, S. and Steinberg, D., 1988, Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis, Proc. Natl. Acad. Sci. USA. 85:2805–2809.

    Article  PubMed  CAS  Google Scholar 

  104. Reers, M., Schmidt, P.C., Erdahl, W.L. and Pfeiffer, D.R., 1986, Separation of phosphatidylethanolamine from its oxidation and hydrolysis products by high-performance liquid chromatography, Chem. Phvs. Lipids, 42:315–321.

    Article  CAS  Google Scholar 

  105. Renkonen, O., 1968, Chromatographic separation of plasmalogenic, alkyl-acyl, and diacyl forms of ethanolamine glycerophosphatides, J. Lipid Res., 9:34–40.

    PubMed  CAS  Google Scholar 

  106. Rouser, G., Kritchevsky, G. and Yamamoto, A., 1967, Column Chromatographie and associated procedures for separation and determination of phosphatides and glycolipids, in: “Lipid Chromatographie Analysis,” Vol. 1, Marinetti, G.V., ed., Marcel Dekker, New York. pp. 147–162.

    Google Scholar 

  107. Rouser, G., Kritchevsky, G. and Yamamoto, A., 1976, Column Chromatographie and associated procedures for separation and determination of phosphatides and glycolipids. in: “Lipid Chromatographie Analysis,” 2nd Edition, Vol 3, Marinetti, G.V., ed., Marcel Dekker, New York, pp. 211–261.

    Google Scholar 

  108. Sappey Marinier, D., Letoublon, R. and Delmau, J., 1988, Phosphorus NMR analysis of human white matter in mixed non-ionic detergent micelles, J. Lipid Res., 29:1237–1243.

    Google Scholar 

  109. Saunders, R.D. and Horrocks, L.A., 1984, Simultaneous extraction and preparation for high performance liquid chromatography of prostaglandins and phospholipids, Anal. Biochem., 143:71–79.

    Article  PubMed  CAS  Google Scholar 

  110. Sax, S., Moore, J., Oley, A., Amenta, J. and Silverman, J., 1982, Liquid-chromatographie estimation of saturated phospholipid palmitate in amniotic fluid compared with a thin-layer Chromatographie method for acetone-precipitated lecithin, Clin. Chem., 28:2264–2267.

    PubMed  CAS  Google Scholar 

  111. Sekar, M.C., Dixon, J.F. and Hokin, L.E., 1987, The formation of inositol 1,2-cyclic 4,5-triphosphate and inositol 1,2-cyclic 4-biphosphate on stimulation of mouse pancreatic minilobules with carbamylcholine, J. Biol. Chem., 262:340–345.

    PubMed  CAS  Google Scholar 

  112. Serrano de la Cruz, D., Santillana, E., Mingo, A., Fuenmayor, G., Pantoja, A. and Fernandez, E., 1988, Improved thin-layer Chromatographie determination of phospholipids in gastric aspirate from newborns for assessment of lung maturity, Clin. Chem., 34:736–738.

    PubMed  CAS  Google Scholar 

  113. Sevanian, A. and Hochstein, P., 1985, Mechanisms and consequences of lipid peroxidation in biological systems, Ann. Rev. Nutr., 5:365–390.

    Article  CAS  Google Scholar 

  114. Schacht, J., 1978, Purification of polyphosphoinositides by chromatography on immobilized neomycin, J. Lipid Res., 19:1063–1067.

    PubMed  CAS  Google Scholar 

  115. Shaw, J.O., Pinckard, R.N., Ferrigni, K.S., McManus, L.M. and Hanahan, D.J., 1981, Activation of human neutrophils with 1-0-hexadecyl/octadecyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (platelet activating factor), J. Immunol., 127:1250–1258.

    PubMed  CAS  Google Scholar 

  116. Shukla, V.H.S., 1988, Recent advances in the high performance liquid chromatography of lipids, Prog. Lipid Res., 27:5–38.

    Article  PubMed  CAS  Google Scholar 

  117. Smith, M. and Jungalwala, F.B., 1981, Reversed-phase high performance liquid chromatography of phosphatidylcholine: a simple method for determining relative hydrophobic interaction of various molecular species, J. Lipid Res., 22:697–704.

    PubMed  CAS  Google Scholar 

  118. Snyder, F., Snyder, C., 1975, Glycerolipids and cancer, Prog. Biochem. Pharmacol. 10:1–18.

    PubMed  CAS  Google Scholar 

  119. Sotirhos, N., Thorngren, C. and Herslof, B., 1985, Reversed-phase high-performance liquid Chromatographic separation and mass detection of individual phospholipid classes, J. Chromatogr. 331:313–320.

    Article  PubMed  CAS  Google Scholar 

  120. Stolyhwo, A., Colin, H.M. and Guiochon, G., 1983, Use of light scattering as a detector principle in liquid chromatography, J. Chromatogr., 265:1–16.

    Article  CAS  Google Scholar 

  121. Stolyhwo, A., Colin, H. and Guiochon, G., 1985, Analysis of triglycerides in oils and fats by liquid chromatography with the laser light scattering detector, Anal. Chem., 57:1342–1354.

    Article  PubMed  CAS  Google Scholar 

  122. Stolyhwo, A., Martin, M. and Guiochon, G., 1987, Analysis of lipid classes by HPLC with the evaporative light scattering detector, J. Liquid Chromatogr., 10:1237–1253.

    Article  CAS  Google Scholar 

  123. Takagi, T. and Itabashi, Y., 1987, Rapid separations of diacyl-and dialkylglycerol enantiomers by high performance liquid chromatography on a chiral stationary phase, Lipids. 22:596–600.

    Article  PubMed  CAS  Google Scholar 

  124. Teng, J.I. and Smith, L.L., 1985, Improved high-performance liquid chromatography of sphingomyelin, J. Chromatogr., 322:240–245.

    Article  PubMed  CAS  Google Scholar 

  125. Terao, J., Setsu Shibata, S. and Matsushita, S., 1988, Selective quantification of arachidonic acid hydroperoxides and their hydroxy derivatives in reverse-phase high performance liquid chromatography, Anal. Biochem., 169:415–423.

    Article  PubMed  CAS  Google Scholar 

  126. Touchstone, J.C., Chen, J.C. and Beaver, K.M., 1980, Improved separation of phospholipids in thin layer chromatography, Lipids, 15:61–62.

    Article  CAS  Google Scholar 

  127. Tyihak, E., Mincsovics, E. and Kalasz, H., 1979, New planar liquid Chromatographic technique:overpressured thin-layer chromatography, J. Chromatogr., 174: 75–82.

    Article  CAS  Google Scholar 

  128. Ursini, F., Bonaldo, L., Maiorino, M. and Gregolin, C., 1983, High-performance liquid chromatography of hydroperoxy derivatives of stearoyllinoleoylphosphatidylcholine and of their enzymatic reduction products, J. Chromatogr., 270:301–308.

    Article  CAS  Google Scholar 

  129. Van der Meeren, P., Vanderdeelen, J., Huys, M. and Baert, L., 1990, Quantification of soybean phospholipid solublility using an evaporative light scattering mass detector, THIS BOOK.

    Google Scholar 

  130. Vidaver, G.A., Ting, A. and Lee, J.W., 1985, Evidence that lysolecithin is an important causal agent of atherosclerosis, J. Theor. Biol., 115:27–41.

    Article  PubMed  CAS  Google Scholar 

  131. Volpi, M., Yassin, R., Naccache, P.H. and Sha’afi, R.I., 1983, Chemotactic factor causes rapid decrease in phosphatydylinositol 4,5-biphosphate and phosphatidylinositol 4-monophosphate in rabbit neutrophils, Biochem. Biophys. Res. Comm., 112:957–964.

    Article  PubMed  CAS  Google Scholar 

  132. Wardlow, M.L., 1985, Rapid isocratic procedure for the separation of platelet-activating factor from phospholipids in human saliva by high-performance liquid chromatography, J. Chromatogr., 342:380–384.

    Article  PubMed  CAS  Google Scholar 

  133. Witkiewicz, Z. and Bladek, J., 1986, Overpressured thin-layer chromatography, J. Chromatogr. (Chromatogr. Rev.), 373:111–140.

    Article  CAS  Google Scholar 

  134. Witter, B., Gunawan, J. and Debuch, H., 1983, On the phospholipid metabolism of glial cell primary cultures. II. Metabolism of 1-alkyl-glycerophosphoethanolamine during time course, J. Neurochem. 40:64–69.

    Article  PubMed  CAS  Google Scholar 

  135. Wong, S.H.Y., Knight, J.A. and Hopfer, S.M., 1987, Lipoperoxides in plasma as measured by liquid-Chromatographic separation of malondialdehyde-thiobarbituric acid adduct, Clin. Chem., 33:214–220.

    PubMed  CAS  Google Scholar 

  136. Wood, R., ed., 1973, “Tumour Lipids: Biochemistry and Metabolism,” American Oil Chemist Society Press, Champaign, Il.

    Google Scholar 

  137. Yandrasitz, J.R., Berry, G. and Segal, S., 1981, High-performance liquid chromatography of phospholipids with UV detection: optimization of separations on silica, J. Chromatogr., 225:319–328.

    Article  PubMed  CAS  Google Scholar 

  138. Yao, J.K. and Rastetter, G.M., 1985, Microanalysis of complex tissue lipids by high-performance thin-layer chromatography, Anal. Biochem. 150:111–116.

    Article  PubMed  CAS  Google Scholar 

  139. Zlatkis, A. and Kaiser, R.E., eds., 1977, “HPTLC-High Performance Thin-Layer Chromatography,” Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Laganiere, S. (1990). Overview of Analytical Methods for Phospholipid Studies. In: Hanin, I., Pepeu, G. (eds) Phospholipids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1364-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1364-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1366-4

  • Online ISBN: 978-1-4757-1364-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics