Skip to main content

Phospholipids — Natural, Semisynthetic, Synthetic

  • Chapter

Abstract

Nature was remarkably inventive in creating the variety of polar lipids which form the matrix of biological membranes. The rationale for the variability of membrane lipids is not clear, it might simply be that these amphiphilic structures have in common the capability to arrange as bilayers in an aqueous environment. However, lipids are not only the plaster which holds the membrane together; there is ample evidence that distinct phospholipid classes or species serve additional tasks which make them indispensable for the functioning of membrane-linked pocesses. For example, phosphatidylinositols are involved in signal transduction and are therefore essential for the viability of eukaryotic cells. Most likely adaptation of polar lipid structures to specific requirements has occurred during evolution. The cell envelope of thermoacidophilic archaebacteria consists of chemically stable tetraether glyceroglyco-(or phospho-) lipids19 that might be essential for these organisms to survive at the extremes of high temperature and low pH. The pulmonary surfactant coating the mammalian alveolus contains dipalmitoylphosphatidylcholine (DPPC) as a major constituent. Together with other phospholipids and specific proteins DPPC reduces the surface tension at the air-liquid interface26. Reversible changes in the membrane phospholipid pattern in response to environmental stress, e.g., temperature or solvents, have repeatedly been observed (see respective chapters in ref.17).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aneja, R., and Chadha, J. S., 1971, A total synthesis of phosphatidylcholines, Biochim. Biophys. Acta 248:455–457.

    Article  CAS  Google Scholar 

  2. Benveniste, J., and Vargaftig, B. B., 1983, Platelet activating factor: An ether lipid with biological activity, in: “Ether Lipids. Biochemical and Biomedical Aspects”, H. K. Mangold and F. Paltauf, eds., Academic Press, New York, pp. 355–376.

    Google Scholar 

  3. Comfurius, P., and Zwaal, R. F. A., 1977, The enzymatic synthesis of phosphatidylserine and purification by CM — cellulose column chromatography, Biochim. Biophys. Acta 488:36–42.

    Article  PubMed  CAS  Google Scholar 

  4. Cunningham, J., and Gigg, R., 1965, The preparation of 1 — O — alk — 1′ — enyl ethers of glycerol, J. Chem. Soc. 2968-2975.

    Google Scholar 

  5. Eibl, H., 1978, Phospholipid synthesis: Oxazaphospholanes and dioxaphospholanes as intermediates, Proc. Natl. Acad. Sci. USA 75:4074–4077.

    Article  PubMed  CAS  Google Scholar 

  6. Eibl, H., 1980, Synthesis of glycerophospholipids, Chem. Phys. Lipids 26:405–429.

    Article  PubMed  CAS  Google Scholar 

  7. Eibl, H., and Woolley, P., 1986, Synthesis of enantiomerically pure glyceryl esters and ethers. I. Methods employing the precursor 1,2 — isopropylidene — sn — glycerol, Chem. Phys. Lipids 41:53–63.

    Article  CAS  Google Scholar 

  8. Eibl, H., and Woolley, P., 1988, Synthesis of enantiomerically pure glyceryl esters and ethers. II. Methods employing the precursor 3,4 — isopropylidene — D — mannitol, Chem. Phys. Lipids 47:47–53.

    Article  CAS  Google Scholar 

  9. El-Tarras, M. F., Abdel Moety, E. M., Ahmad, A. K. S., and Amer, M. M., 1976, Studies on rancidity of oils and fats. On the autoxidation of phospholipids, Oleagineux 31:229; Chem. Abstr. 85:122107.

    Google Scholar 

  10. Goldfine, H., and Hagen, P.-O., 1972, Bacterial plasmalogens, in: “Ether Lipids. Chemistry and Biology,” F. Snyder, ed., Academic Press, New York, pp. 329–350.

    Chapter  Google Scholar 

  11. Hermetter, A., and Paltauf, F., 1981, A facile procedure for the synthesis of saturated phosphatidylcholines, Chem. Phys. Lipids 28:111–115.

    Article  CAS  Google Scholar 

  12. Hermetter, A., and Paltauf, F., 1987, Partial synthesis of glycerophospholipids, in: “Lecithin. Technological, Biological and Therapeutic Aspects,” I. Hanin and G. B. Ansell, eds., Plenum Press, New York, pp. 37–45.

    Google Scholar 

  13. Hermetter, A., Paltauf, F., and Hauser, H., 1982, Synthesis of diacyl and alkylacyl glycerophosphoserines, Chem. Phys. Lipids 30:35–45.

    Article  CAS  Google Scholar 

  14. Hermetter, A., Stütz, H., Franzmair, R., and Paltauf, F., 1989, 1 — O — Trityl — sn — glycero — 3 — phosphocholine: a new intermediate for the facile preparation of mixed — acid 1,2 — diacylglycerophosphocholines, Chem. Phys. Lipids, 50: 57–62.

    Article  CAS  Google Scholar 

  15. Horrocks, L. A., 1972, Content composition and metabolism of mammalian and avian lipids that contain ether groups, in: “Ether Lipids. Chemistry and Biology,” F. Snyder, ed., Academic Press, New York, pp. 177–272.

    Chapter  Google Scholar 

  16. Kates, M., 1972, Ether — linked lipids in extremely halophilic bacteria, in: “Ether Lipids. Chemistry and Biology,” F. Snyder, ed., Academic Press, New York, pp. 351–398.

    Chapter  Google Scholar 

  17. Kates, M., and Kuksis, A., eds., “Membrane Fluidity. Biophysical Techniques and Cellular Regulation”, 1980, The Humana Press Inc., Clifton.

    Google Scholar 

  18. Kudo, S., 1988, Biosurfactants as food additives, in: “Proceedings World Conference on Biotechnology for the Fats and Oils Industry,” T. H. Applewhite, ed., Amer. Oil Chem. Soc, pp. 195-201.

    Google Scholar 

  19. Langworthy, T. A., 1983, Dialkyldiglyceroltetraethers, in: “Ether Lipids. Biochemical and Biomedical Aspects,” H. K. Mangold and F. Paltauf, eds., Academic Press, New York, pp. 161–175.

    Google Scholar 

  20. Mangold, H. K., 1972, The search for alkoxylipids in plants, in: “Ether Lipids. Chemistry and Biology,” F. Snyder, ed., Academic Press, New York, pp. 399–405.

    Chapter  Google Scholar 

  21. Nielsen, N. C., and Wilcox, J. R., 1988, Biotechnology for soybean improvement, in: “Proceedings. World Conference on Biotechnology for the Fats and Oils Industry,” T. H. Applewhite, ed., Amer. Oil Chem. Soc, pp. 58-64.

    Google Scholar 

  22. Paltauf, F., 1983, Biosynthesis of 1 — O — (1’alkenyl) glycerolipids (plasmalogens), in: “Ether Lipids. Biochemical and Biomedical Aspects,” H. K. Mangold and F. Paltauf, eds., Academic Press, New York, pp. 107–128.

    Google Scholar 

  23. Pardun, H., 1982, Progress in productions and processing of vegetable lecithins, Fette Seifen. Anstrichm. 84:1–11.

    Article  CAS  Google Scholar 

  24. Pardun, H., 1982, An empiric method to determine the emulsifiability of vegetable lecithins in O/W — systems, Fette Seifen. Anstrichm. 84:291–299.

    Article  CAS  Google Scholar 

  25. Patton, G. M., Fasulo, J. M., and Robins, S. J., 1982, Separation of phospholipids and individual molecular species of phospholipids by high — performance liquid chromatography, J. Lipid Res. 23:190–196.

    PubMed  CAS  Google Scholar 

  26. Possmayer, F., Metcalfe, I. L., and Enhorning, G., 1980, The pulmonary surfactant, in: “Membrane Fluidity. Biophysical Techniques and Cellular Regulation”, M. Kates and A. Kuksis, eds., The Humana Press Inc., Clifton, pp. 57–67.

    Google Scholar 

  27. Ratledge, C., 1987, Microorganisms as sources of phospholipids, in: Lecithin. Technological, Biological and Therapeutic Aspects,” I. Hanin and G. B. Ansell, eds., Plenum Press, New York, pp. 17–35.

    Google Scholar 

  28. Stepanov, A. E., and Shvets, V. I., 1980, Formation of phosphoester bonds in phosphoglyceride synthesis, Chem. Phys. Lipids 41:1–51.

    Article  Google Scholar 

  29. Warner, T. G., and Benson, A., 1977, An improved method for the preparation of unsaturated phosphatidylcholines: Acylation of sn — glycero — 3 — phosphocholine in the presence of sodium methylsulfinylmethide, J.Lipid Res. 18:548–552.

    PubMed  CAS  Google Scholar 

  30. Woolley, P., and Eibl, H., 1988, Synthesis of enantiomerically pure phospholipids including phosphatidylserine and phosphatidylglycerol, Chem. Phys.Lipids 47:55–62.

    Article  CAS  Google Scholar 

  31. Yamane, T., 1988, Enzyme technology for the lipids industry: an engineering overview, in: “Proceedings. World Conference on Biotechnology for the Fats and Oils Industry,” T. H. Applewhite, ed., Amer. Oil Chem. Soc., pp. 17-22.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paltauf, F., Hermetter, A. (1990). Phospholipids — Natural, Semisynthetic, Synthetic. In: Hanin, I., Pepeu, G. (eds) Phospholipids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1364-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1364-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1366-4

  • Online ISBN: 978-1-4757-1364-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics