Incorporation of Ion Channels by Fusion

  • Wolfgang Hanke


From the time when Mueller and colleagues (1962) first developed the planar lipid bilayer, a major goal has been to incorporate biological membrane transport proteins into these electrically accessible model membranes. One important group of transporters is that of the ion-channel proteins. Many different ion channels have been identified in biological membranes, and it is important to investigate them in single-channel experiments. Just as patch recording (Hamill et al., 1981) is the only method for observing single channels in their native membranes, the planar bilayer has thus far proven to be the system of choice for studying single channels in model membranes of defined composition. The insertion of channel proteins into planar bilayers is thus the major problem that must be solved before such reconstitution experiments can be undertaken.


Fusion Process Fusion Event Planar Lipid Bilayer Planar Bilayer Patch Recording 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boheim, G., Hanke, W., and Eibl, H., 1980, Lipid phase transition in planar lipid bilayer membrane and its effects on carrier and pore mediated transport, Proc. Natl. Acad. Sci. U.S.A. 77:3403–3407.PubMedCrossRefGoogle Scholar
  2. Boheim, G., Hanke, W., Methfessel, C., Eibl, H., Kaupp, U. B., Maelicke, A., and Schultz, J. E., 1982, Membrane reconstitution below lipid phase transition temperature, in: Transport in Biomembranes (P. Spach ed.), PP. 87-97, Raven Press, New York.Google Scholar
  3. Cohen, F. S., Finkelstein, A., and Zimmerberg, J., 1980, Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane, J. Gen. Physiol. 75:251–270.PubMedCrossRefGoogle Scholar
  4. Cohen, F. S., Akabes, M. H., Zimmerberg, J., and Finkelstein, A., 1984, Parameters effecting the fusion of unilamellar phospholipid vesicles with planar lipid bilayers, J. Cell Biol. 98:1054–1062.PubMedCrossRefGoogle Scholar
  5. Coronado, R., and Latorre, R., 1983, Formation of phospholipid bilayers on patch-clamp pipettes, Biophys. J. 43:231–236.PubMedCrossRefGoogle Scholar
  6. Duezguenz, N., and Ohki, S., 1980, Fusion of small unilamellar liposomes with phospholipid planar bilayer membranes and large single bilayer vesicles, Biochim. Biophys. Acta. 640:734–747.Google Scholar
  7. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp technique for high resolution current recording from cells and cell-free patches, Pfluegers Arch. 391:85-100.Google Scholar
  8. Hanke, W., 1984, Reconstitution of channel proteins from Torpedo electroplax into virtually solvent free planar lipid bilayers, Biochem. Bioeng. J. 12:341–151.CrossRefGoogle Scholar
  9. Hanke, W., and Kaupp, U. B., 1984, Incorporation of ion channels from bovine rod outer segments into planar lipid bilayers, Biophys. J. 46:587–595.PubMedCrossRefGoogle Scholar
  10. Hanke, W., Eibl, H., and Boheim, G., 1981, A new method for membrane reconstitution: Fusion of protein containing vesicles with planar lipid bilayers below lipid phase transition temperature, Biophys. Struct. Mech. 7:131–137.PubMedCrossRefGoogle Scholar
  11. Hanke, W., Boheim, G., Barhanin, J., Pauron, D., and Lazdunski, M., 1984a, Reconstitution of highly purified saxitoxin sensitive sodium channels into planar lipid bilayers, EMBO J. 3:509–515.PubMedGoogle Scholar
  12. Hanke, W., Methfessel, C., Wilmsen, H. U., and Boheim, G., 1984b, Ion channel reconstitution into planar lipid bilayers on glass pipettes, Biochem. Bioeng. J. 12:329–339.CrossRefGoogle Scholar
  13. Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Catterall, W. A., and Montai, M., 1984, Functional reconstitution of the purified sodium channel into planar lipid bilayers (in press). Hoeckstra, D., 1982, Role of lipid phase transition and membrane hydration in phospholipid vesicle fusion, Biochemistry 21:2833–2840.Google Scholar
  14. Kazlow, M. M., and Markin, V. S., 1983, Cell biophysics, possible mechanism of membrane fusion, Biophysics 2:255–261.Google Scholar
  15. Labarca, P., Coronado, R., and Miller, C., 1980, Thermodynamic and kinetic studies of the gating of a potassium selective channel from sarcoplasmic reticulum, J. Gen. Physiol. 76:397–424.PubMedCrossRefGoogle Scholar
  16. Latorre, R., Vergara, C., and Hidalgo, C., 1982, Reconstitution in planar lipid bilayers of a calcium.Google Scholar
  17. dependent potassium channel from tranverse tubule membranes isolated from rabbit skeletal muscle, Proc. Natl. Acad. Sci. U.S.A. 79:805-809.Google Scholar
  18. Markin, W. S., and Kozlow, M. M., 1983, Primary act in the process of membrane fusion, Biophysics 28:73–78.Google Scholar
  19. Miller, C., 1978, Voltage gated cation conductance channel from fragmented sarcoplasmic reticulum: Steady state electrical properties, J. Membr. Biol. 40:1–23.PubMedGoogle Scholar
  20. Miller, C., and Racker, R., 1976, Calcium induced fusion of fragmented sarcoplasmic reticulum with artificial planar bilayers, J. Membr. Biol. 30:283–300.PubMedCrossRefGoogle Scholar
  21. Miller, C., and Rosenberg, R. C., 1979, Modification of a voltage gated potassium channel from sarcoplasmic reticulum by a pronase derived specific endopeptidase, J. Gen. Physiol. 74:457–478.PubMedCrossRefGoogle Scholar
  22. Moczydlowski, E., Garber, S. G., and Miller, C., 1984, Batrachotoxin activated sodium channels in planar lipid bilayers. Competition of tetrodotoxin by sodium, J. Gen. Physiol. 84:665–686.PubMedCrossRefGoogle Scholar
  23. Montai, M., and Mueller, P., 1972, Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties, Proc. Natl. Acad. Sci. U.S.A. 69:3561–3566.CrossRefGoogle Scholar
  24. Mueller, P., Rudin, D. O., Ti Tien, H., and Wescott, W. C., 1962, Reconstitution of cell membrane structure in vitro and its transformation into an excitable system, Nature 194:979–980.PubMedCrossRefGoogle Scholar
  25. Papahadjopoulos, D., Vail, W. J., Newton, G., Nir, S. M., Jacobson, K., Poste, G., and Lazo, R., 1977, Studies on membrane fusion. III. The role of calcium induced phase changes, Biochim. Biophys. Acta 465:579–598.PubMedCrossRefGoogle Scholar
  26. Schindler, H., and Rosenbusch, J. P., 1978, Matrix protein from Escherichia coli outer membrane forms voltage-controlled channels in lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 75:3751–3755.PubMedCrossRefGoogle Scholar
  27. Schullery, S. E., Schmidt, C. F., Felgner, P., Tillack, T. W., and Thompson, T. E., 1980, Fusion of dipalmitoylphosphatidylcholine vesicles, Biochemistry 19:3919–3923.PubMedCrossRefGoogle Scholar
  28. Tank, D., Miller, C., and Webb, W. W., 1982, Isolated patch recording from liposomes containing.Google Scholar
  29. functionally reconstituted chloride channels from electroplax, Proc. Natl. Acad. Sci. U.S.A. 79:7749-7753.Google Scholar
  30. Verkleij, A. J., 1984, Lipidic intramembraneous particles, Biochim. Biophys. Acta 779:43–63.PubMedCrossRefGoogle Scholar
  31. Verkleij, A. J., Van Echtfeld, C. J. A., Gerritsen, W. J., Cullis, P. R., and DeKruiff, B., 1980, The lipidic particle as an intermediate structure in membrane fusion process and bilayer to hexagona L HII transitions, Biochim. Biophys. Acta 600:620–624.PubMedCrossRefGoogle Scholar
  32. Wilmsen, H. U., Methfessel, C. Hanke, W., and Boheim, G., 1983, Channel current fluctuation studies with solvent free planar lipid bilayers using Neher-Sakmann pipettes, in: Physical Chemistry of Transmembrane Ion Motion (G. Spach, ed.), pp. 479-485, Elsevier, Amsterdam.Google Scholar
  33. Zimmerberg, J., Finkelstein, A., and Cohen, F. S., 1980a, Micromolar calcium stimulates fusion of lipid vesicles with planar bilayers containing a calcium-binding protein, Science 210:906–908.PubMedCrossRefGoogle Scholar
  34. Zimmerberg, J., Finkelstein, A., and Cohen, F. S., 1980b, Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. I. Discharge of vesicular contents across the planar membrane, J. Gen. Physiol. 75:241–250.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Wolfgang Hanke
    • 1
  1. 1.Lehrstuhl für ZellphysiologieRuhr UniversitätBochumFederal Republic of Germany

Personalised recommendations