Advertisement

Fusion of Liposomes to Planar Bilayers

  • Fredric S. Cohen

Abstract

During the late 1970s and early 1980s, methods to reconstitute integral membrane channel-forming proteins into planar membranes were developed. There are now two basic strategies. The first is to fuse vesicles that contain channels to preformed phospholipid planar membranes (Miller and Racker, 1976; Cohen et al., 1980; Akabas et al., 1984). The vesicles can be those obtained by the usual methods of cell fractionation—homogenization and centrifugation— and are often referred to as “native” vesicles, or they can be phospholipid vesicles that have had a purified channel incorporated into the vesicular membrane, known as “artificial” vesicles. The second strategy is to incorporate membrane channels into monolayers derived from vesicles (Verger and Pattus, 1976; Pattus et al., 1981; Schindler, 1979) and to form bilayers with functional channels from these monolayers (Schindler and Rosenbusch, 1978; Schindler and Quast, 1980; Nelson et al., 1980; Vodyanoy and Murphy, 1982; Coronado and Latorre, 1983). Either native or artificial vesicles can be used to form the monolayers.

Keywords

Divalent Cation Osmotic Gradient Fuse Vesicle Phospholipid Vesicle Planar Lipid Bilayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akabas, M. H., Cohen, F. S., and Finkelstein, A., 1984, Separation of the osmotically driven fusion event from vesicle-planar membrane attachment in a model system for exocytosis, J. Cell. Biol. 98:1063–1071.PubMedCrossRefGoogle Scholar
  2. Bell, J., and Miller, C., 1984, Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum, Biophys. J. 45:279–287.PubMedCrossRefGoogle Scholar
  3. Cohen, F. S, and Akabas, M. H., 1982, The nature of the region of contact between fusing membranes, Biophys. J. 37:26a.CrossRefGoogle Scholar
  4. Cohen, F. S., Zimmerberg, J., and Finkelstein, A., 1980, Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. II. Incorporation of a vesicular membrane marker into the planar membrane, J. Gen. Physiol. 75:251–270.PubMedCrossRefGoogle Scholar
  5. Cohen, F. S., Akabas, M. H., and Finkelstein, A., 1982, Osmotic swelling of phospholipid vesicles causes them to fuse with a planar phospholipid bilayer membrane, Science 217:458–460.PubMedCrossRefGoogle Scholar
  6. Cohen, F. S., Akabas, M. H., Zimmerberg, J., and Finkelstein, A., 1984, Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes, J. Cell Biol. 98:1054–1062.PubMedCrossRefGoogle Scholar
  7. Coronado, R., and Latorre, R. 1982, Detection of K+ and Cl channels from calf cardiac sarcolemma in planar lipid bilayer membranes, Nature 298:849–852.PubMedCrossRefGoogle Scholar
  8. Coronado, R., and Latorre, R., 1983, Phospholipid bilayers made from monolayers on patch-clamp pipettes, Biophys. J. 43:231–236.PubMedCrossRefGoogle Scholar
  9. Coronado, R., Huganir, R., and Mautner, G., 1981, A K+-selective conductance sensitive to choli-nergic antagonists obtained by fusion of axonal membrane vesicles to planar bilayers, FEBS Lett. 131:355-358.Google Scholar
  10. Coronado, R., Latorre, R., and Mautner, H. G., 1984, Single potassium channels with delayed rectifier behavior from lobster axon membranes, Biophys. J. 45:289–299.PubMedCrossRefGoogle Scholar
  11. Ehrlich, B. E., Finkelstein, A., Forte, M., and Kung, C., 1984, Voltage-dependent calcium channels from Paramecium cilia incorporated into planar lipid bilayers, Science 225:427–428.PubMedCrossRefGoogle Scholar
  12. French, R. J., Worley, J. F. III, and Krueger, B. K., 1984, Voltage-dependent block by saxitoxin of sodium channels incorporated into planar lipid bilayers, Biophys. J. 45:301–310.PubMedCrossRefGoogle Scholar
  13. Hanke, W., and Kaupp, U. B., 1984, Incorporation of ion channels from bovine rod outer segments into planar lipid bilayers, Biophys. J. 46:587–595.PubMedCrossRefGoogle Scholar
  14. Hanke, W., and Miller, C., 1983, Single chloride channels from Torpedo electroplax: Activation by protons, J. Gen. Physiol. 82:25–45.PubMedCrossRefGoogle Scholar
  15. Hanke, W., Eibl, H., and Boheim, G., 1981, A new method for membrane reconstitution: Fusion of protein-containing vesicles with planar bilayer membranes below lipid phase transition temperature, Biophys. Struct. Mech. 7:131–137.PubMedCrossRefGoogle Scholar
  16. Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Catterall, W. A., and Montai, M., 1985, Functional reconstitution of the purified brain sodium channel in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 82:240–244.PubMedCrossRefGoogle Scholar
  17. Krueger, B. K., Worley, J. F. III, and French, R. J., 1983, Single sodium channels from rat brain incorporated into planar lipid bilayer membranes, Nature 303:172–175.PubMedCrossRefGoogle Scholar
  18. Labarca, P., Coronado, R., and Miller, C., 1980, Thermodynamic and kinetic studies of the gating.Google Scholar
  19. behavior of a K+-selective channel from the sarcoplasmic reticulum membrane, J. Gen. Physiol. 76:397-424.Google Scholar
  20. Latorre, R., Vergara, C., and Hidalgo, C., 1982, Reconstitution in planar lipid bilayers of a Ca2+ — dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle, Proc. Natl. Acad. Sci. U.S.A. 79:805–809.PubMedCrossRefGoogle Scholar
  21. Miller, C., and Racker, E., 1976, Ca2+-induced fusion of fragmented sarcoplasmic reticulum with artificial bilayers, J. Membr. Biol. 30:283–300.PubMedCrossRefGoogle Scholar
  22. Moczydlowski, E., and Latorre, R., 1983, Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions, J. Gen. Physiol. 82:511–542.PubMedCrossRefGoogle Scholar
  23. Moczydlowski, E., Garber, S. S., and Miller, C., 1984, Batrachotoxin-activated Na+ channels in planar lipid bilayers. Competition of tetrodotoxin block by Na+, J. Gen. Physiol. 84:665–686.PubMedCrossRefGoogle Scholar
  24. Nelson, N., Anholt, R., Lindstrom, J., and Montai, M., 1980, Reconstitution of purified acetylcholine receptors with functional ion channels in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 77:3057–3061.PubMedCrossRefGoogle Scholar
  25. Nelson, M. T., French, R. J., and Krueger, B. K., 1984, Voltage-dependent calcium channels from brain incorporated into planar lipid bilayers, Nature 308:77–80.PubMedCrossRefGoogle Scholar
  26. Pattus, F., Rothen, C., Streit, M., and Zahler, P., 1981, Further studies on the spreading of biomembranes at the air/water interface. Structure, composition, enzymatic activities of human erythrocyte and sarcoplasmic reticulum membrane films, Biochim. Biophys. Acta 647:29–39.PubMedCrossRefGoogle Scholar
  27. Sariban-Sohraby, S., Latorre, R., Burg, M., Olans, L., and Benos, D., 1984, Amiloride-sensitive epithelial Na+ channels reconstituted into planar lipid bilayer membranes, Nature 308:80–82.PubMedCrossRefGoogle Scholar
  28. Schindler, H., 1979, Exchange and interactions between lipid layers at the surface of a liposome solution, Biochim. Biophys. Acta 555:316–336.PubMedCrossRefGoogle Scholar
  29. Schindler, H., and Quast, U., 1980, Functional acetylcholine receptor from Torpedo marmorata in planar membranes, Proc. Natl. Acad. Sci. U.S.A. 77:3052–3056.PubMedCrossRefGoogle Scholar
  30. Schindler, H., and Rosenbusch, J., 1978, Matrix protein from Escherichia coli outer membranes forms voltage-controlled channels in lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 75:3751–3755.PubMedCrossRefGoogle Scholar
  31. Verger, R., and Pattus, R., 1976, Spreading of membranes at the air-water interface, Chem. Phys. Lipids 16:285–291.PubMedCrossRefGoogle Scholar
  32. Vodyanoy, V., and Murphy, R. B., 1982, Solvent-free lipid biomolecular membranes of large surface area, Biochim. Biophys. Acta 687:189–194.PubMedCrossRefGoogle Scholar
  33. White, M. M., and Miller, C., 1979, A voltage-gated anion channel from the electric organ of Torpedo californica, J. Biol. Chem. 254:10161–10166.Google Scholar
  34. Young, T. M., and Young, J. D., 1984, Protein-mediated intermembrane contact facilitates fusion of lipid vesicles with planar bilayers, Biochim. Biophys. Acta 775:441–445.PubMedCrossRefGoogle Scholar
  35. Zimmerberg, J., Cohen, F. S., and Finkelstein, A., 1980a, Fusion of phospholipid vesicles with planar phospholipid bilayer membranes. I. Discharge of vesicular contents across the planar membrane, J. Gen. Physiol. 75:241–250.PubMedCrossRefGoogle Scholar
  36. Zimmerberg, J., Cohen, F. S., and Finkelstein, A., 1980b, Micromolar Ca2+ stimulates fusion of lipid vesicles with planar bilayers containing a calcium-binding protein, Science 210:906–908.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Fredric S. Cohen
    • 1
  1. 1.Department of PhysiologyRush Medical CollegeChicagoUSA

Personalised recommendations