Single-Channel Enzymology

  • Edward Moczydlowski


Until recent years, analysis of ion channel mechanisms belonged to the specialty of electrophysiology. Prerequisites for this work included a background in electronics, microelectrode techniques, and voltage clamping. In this voltage-clamp era, the complete repertoire of biochemical techniques had been difficult to apply to channel proteins because there were no routine assays for purification and functional studies. At present, advances in many fields have salvaged ion channels for biochemistry, as evidenced by the diversity of approaches in this volume. Liposome, planar bilayer, and patch recording studies take their inspiration from test-tube tactics that are familiar to many workers in the biochemical and molecular fields. The classical electrophysiologist now hastens to learn the subtleties of channel cloning, while the molecular biologist pauses to reviews the conclusions of noise analysis.


Sarcoplasmic Reticulum Voltage Dependence Dissociation Rate Constant Planar Lipid Bilayer Burst Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelman, W. J., and French, R. J., 1978, Blocking of squid axon potassium channel by external caesium ions, J. Physiol. (Lond.) 276:13-25.Google Scholar
  2. Aldrich, R. W., and Yellen, G., 1984, Analysis of nonstationary channel kinetics, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 287–299, Plenum Press, New York.Google Scholar
  3. Anderson, O. S., 1984, Gramicidin channels, Annu. Rev. Physiol. 46:531–548.CrossRefGoogle Scholar
  4. Armstrong, C. M., 1975, Potassium pores of nerve and muscle membranes, in: Membranes: A Series of Advances, Vol. 3 (G. Eisenman, ed.), pp. 325-358 Marcel Dekker, New York.Google Scholar
  5. Auerbach, A., and Sachs, F., 1983, Flickering of a nicotinic ion channel to a subconductance state, Biophys. J. 42:1–10.PubMedCrossRefGoogle Scholar
  6. Auerbach, A., and Sachs, F., 1984, Single-channel currents from acetylcholine receptors in embryonic chick muscle: Kinetic and conductance properties of gaps within bursts, Biophys. J. 45:187–198.PubMedCrossRefGoogle Scholar
  7. Banerjee, R., Epstein, M., Kandrach, M., Zimniak, P., and Racker, E., 1979, A new method of preparing Ca2+-ATPase from sarcoplasmic reticulum: Extraction with octylglucoside, Memb. Biochem. 2:283–297.CrossRefGoogle Scholar
  8. Benz, R., and Läuger, P., 1976, Kinetic analysis of carrier-mediated ion transport by the charge-pulse technique, J. Membr. Biol. 27:171–191.PubMedCrossRefGoogle Scholar
  9. Brahm, J., 1977, Temperature-dependent changes of chloride transport kinetics in human red cells, J. Gen. Physiol. 70:283–306.PubMedCrossRefGoogle Scholar
  10. Brahm, J., 1983, Kinetics of glucose transport in human erythrocytes, J. Physiol. (Lond.) 339:339-354.Google Scholar
  11. Brown, A. M., Kunze, D. L., and Yatani, A., 1984, The agonist effect of dihydropyridines on Ca channels, Nature 311:570–572.PubMedCrossRefGoogle Scholar
  12. Brunner, J., Graham, D. E., Hauser, H., and Semenza, G., 1980, Ion and sugar permeabilities of lecithin bilayers: Comparison of curved and planar bilayers, J. Membr. Biol. 57:133–141.PubMedCrossRefGoogle Scholar
  13. Byerly, L., and Hagiwara, S., 1982, Calcium currents in internally perfused nerve cell bodies of Limnea stagnalis, J. Physiol. (Lond.) 322:503-528.Google Scholar
  14. Changeux, J. P., Devillers-Thiery, A., and Chemoulli, P., 1984, Acetylcholine receptor: An allosteric protein, Science 225:1335–1345.PubMedCrossRefGoogle Scholar
  15. Colombini, M., 1980, Pore size and properties of channels from mitochondria isolated from Neurospora crassa, J. Membr. Biol. 53:79–84.CrossRefGoogle Scholar
  16. Colquhoun, D., 1973, Lectures on Biostatistics, Clarendon Press, Oxford.Google Scholar
  17. Colquhoun, D., and Hawkes, A. G., 1977, Relaxation and fluctuations of membrane currents that flow through drug-operated channels, Proc. R. Soc. (Lond.) [Biol.] 199:231-262.Google Scholar
  18. Colquhoun, D., and Hawkes, A. G., 1981, On the stochastic properties of single ion channels, Proc. R. Soc. (Lond.) [Biol.] 211:205-235.Google Scholar
  19. Colquhoun, D., and Hawkes, A. G., 1982, On the stochastic properties of bursts of single ion channel openings and of clusters of bursts, Phil. Trans. R. Soc. Lond. [Biol.] 300:1-59.Google Scholar
  20. Colquhoun, D., and Hawkes, A. G., 1984, The principles of stochastic interpretation of ion-channel mechanisms, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 135–175, Plenum Press, New York.Google Scholar
  21. Colquhoun, D., and Sakmann, B., 1981, Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels, Nature 294:464–466.PubMedCrossRefGoogle Scholar
  22. Colquhoun, D., and Sakmann, B., 1984, Bursts of openings in transmitter-activated ion channels, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 345–364, Plenum Press, New York.Google Scholar
  23. Colquhoun, D., and Sheridan, R. E., 1981, The modes of action of gallamine, Proc. R. Soc. (Lond.) [Biol.] 211:181-203.Google Scholar
  24. Colquhoun, D., and Sigworth, F., 1984, Fitting and statistical analysis of single channel records, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 191–263, Plenum Press, New York.Google Scholar
  25. Conti, F., and Neher, E., 1980, Single channel recordings of K+ currents in squid axons, Nature 285:140–143.PubMedCrossRefGoogle Scholar
  26. Coronado, R., and Miller, C., 1980, Decamethonium and hexamethonium block K+ channels of sarcoplasmic reticulum, Nature 288:495–497.PubMedCrossRefGoogle Scholar
  27. Coronado, R., and Miller, C., 1982, Conduction and block by organic cations in a K+-selective channel from sarcoplasmic reticulum incorporated into planar phospholipid bilayers, J. Gen. Physiol. 79:529–547.PubMedCrossRefGoogle Scholar
  28. Eisenman, G., and Horn, R., 1983, Ion selectivity revisited: The role of kinetic and equilibrium processes in ion permeation through channels, J. Membr. Biol. 76:197–225.PubMedCrossRefGoogle Scholar
  29. Eisenman, G., Sandblom, J., and Neher, E., 1978, Interactions in cation permeation through the gramicidin channel: Cs, Rb, K, Na, Li, Tl, H and effects of anion binding. Biophys. J. 22:307–340.PubMedCrossRefGoogle Scholar
  30. Faller, L., Jackson, R., Malinowska, D., Mukidjam, E., Rabon, E., Saccomani, G., Sachs, G., and Smolka, A., 1982, Mechanistic aspects of gastric (H+-K+)-ATPase, Ann. N.Y. Acad. Sci. 402:146–163.PubMedCrossRefGoogle Scholar
  31. Fenwick, E. M., Marty, A., and Neher, E., 1982, Sodium and calcium channels in bovine chromaffin cells, J. Physiol. (Lond), 331:559-635.Google Scholar
  32. FitzHugh, R., 1983, Statistical properties of the asymmetric random telegraph signal, with applications to single-channel analysis, Mat. Biosci. 64:75–89.CrossRefGoogle Scholar
  33. French, R. J., and Shoukimas, J. J., 1985, An ion’s view of the potassium channel: The structure of the permeation pathway as sensed by a variety of blocking ions, J. Gen. Physiol. 85:669–698.PubMedCrossRefGoogle Scholar
  34. French, R. J., Worley, J. F., and Krueger, B. K., 1984, Voltage-dependent block by saxitoxin of sodium channels incorporated into planar lipid bilayers, Biophys. J. 45:301–310.PubMedCrossRefGoogle Scholar
  35. Fröhlich, O., 1984, How channel-like is a biological carrier? Studies with the erythrocyte anion transporter, Biophys. J. 45:93–94.PubMedCrossRefGoogle Scholar
  36. Hall, J. E., 1975, Access resistance of a small circular pore, J. Gen. Physiol. 66:531–532.PubMedCrossRefGoogle Scholar
  37. Hamill, O. P., and Sakmann, B., 1981, Multiple conductance state of single acetylcholine receptor channels in embryonic muscle cells, Nature 294:462–464.PubMedCrossRefGoogle Scholar
  38. Hamill, O. P., Bormann, J., and Sakmann, B., 1983, Activation of multiple-conductance state chloride channels in spinal neurones by glycine and GABA, Nature 305:805–808.PubMedCrossRefGoogle Scholar
  39. Hanke, W., and Miller, C., 1983, Single chloride channels from Torpedo electroplax. Activation by protons, J. Gen. Physiol. 82:25–45.PubMedCrossRefGoogle Scholar
  40. Hess, P., Lansman, J. B., and Tsien, R. W., 1984, Different modes of Ca channel gating behavior favored by dihydropyridine Ca agonists and antagonists, Nature 311:538–544.PubMedCrossRefGoogle Scholar
  41. Hille, B., 1971, The permeability of the sodium channel to organic cations in myelinated nerve, J. Gen. Physiol. 59:637–658.CrossRefGoogle Scholar
  42. Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  43. Horn, R., Vandenberg, C.A., and Lange, K., 1984, Statistical analysis of single sodium channels. Effects of N-bromoacetamide, Biophys. J. 45:323–335.PubMedCrossRefGoogle Scholar
  44. Huang, L. M., Catterall, W. A., and Ehrenstein, G., 1979, Comparison of ionic selectivity of batrachotoxin-activated channels with different tetrodotoxin dissociation constants, J. Gen. Physiol. 73:839–854.PubMedCrossRefGoogle Scholar
  45. Inesi, G., Watanabe, T., Coan, C., and Murphy, A., 1982, The mechanism of sarcoplasmic reticulum ATPase, Ann. N.Y. Acad. Sci. 402:515–534.PubMedCrossRefGoogle Scholar
  46. Jorgensen, P. L., 1975, Isolation and characterization of the components of the sodium pump, Q. Rev. Biophys. 7:239–274.CrossRefGoogle Scholar
  47. Kernohan, J. C., 1965, The pH-activity curve of bovine carbonic anhydrase and its relationship to the inhibition of the enzyme by anions, Biochim. Biophys. Acta 96:304–317.PubMedGoogle Scholar
  48. Labarca, P.P., and Miller, C., 1981, A K+-selective, three-state channel from fragmented sarcoplasmic reticulum of frog leg muscle, J. Membr. Biol. 61:31–38.PubMedCrossRefGoogle Scholar
  49. Labarca, P., Coronado, R., and Miller, C., 1980, Thermodynamic and kinetic studies of the gating behavior of a K+-selective channel from the sarcoplasmic reticulum membrane, J. Gen. Physiol. 76:397–424.PubMedCrossRefGoogle Scholar
  50. Latorre, R., and Miller, C., 1983, Conduction and selectivity in potassium channels, J. Membr. Biol. 71:11–30.PubMedCrossRefGoogle Scholar
  51. Läuger, P., 1980, Kinetic properties of ion carrier and channels, J. Membr. Biol. 57:163–178.PubMedCrossRefGoogle Scholar
  52. MacLennan, D. H., Seeman, P., lies, G. H., and Yip, C. C., 1971, Membrane formation by the adenosine triphosphatase of sarcoplasmic reticulum, J. Biol. Chem. 246:2702–2710.PubMedGoogle Scholar
  53. Makowski, L., Caspar, D., Phillips, W., Baker, T., and Goodenough, D., 1984, Gap junction structures: Variation and conservation in connexon conformation and packing, Biophys. J. 45:208–218.PubMedCrossRefGoogle Scholar
  54. Methfessel, C., and Boheim, G., 1982, The gating of single calcium-dependent potassium channels is described by an activation-blockage mechanism, Biophys, Struct. Mech. 9:35–60.CrossRefGoogle Scholar
  55. Miller, C., 1982, Bis-quaternary ammonium blockers as structural probes of the sarcoplasmic reticulum K+ channel, J. Gen. Physiol. 79:869–891.PubMedCrossRefGoogle Scholar
  56. Miller, C., Moczydlowski, E., Latorre, R., and Phillips, M., 1985, Charybdotoxin, a high-affinity inhibitor of single Ca2+-activated K+ channels from mammalian skeletal muscle, Nature 313:316–318.PubMedCrossRefGoogle Scholar
  57. Mimms, L. T., Zampighi, G., Nozaki, Y., Tanford, C., and Reynolds, J. A., 1981, Phospholipid vesicle formation and transmembrane protein incorporation using octylglucoside, Biochemistry 181:833–840.CrossRefGoogle Scholar
  58. Moczydlowski, E. G., and Fortes, P. A. G., 1981, Inhibition of sodium and potassium adenosine triphosphatase by 2′,3′-O-(2,4,6-trintro-cyclohexadienylidine) adenine nucleotides, J. Biol. Chem. 256:2357–2366.PubMedGoogle Scholar
  59. Moczydlowski, E., and Latorre, R., 1983, Gating kinetics of Ca-activated K-channels from rat muscle incorporated into planar lipid bilayers: Evidence for two voltage-dependent Ca2+ binding reactions. J. Gen. Physiol. 82:511–542.PubMedCrossRefGoogle Scholar
  60. Moczydlowski, E., Garber, S. S., and Miller, C., 1984a, Batrachotoxin-activated Na+ channels in planar lipid bilayers: Competition of tetrodotoxin block by Na+, J. Gen. Physiol. 84:665–686.PubMedCrossRefGoogle Scholar
  61. Moczydlowski, E., Hall, S. Garber, S. S., Strichartz, G. R., and Miller, C., 1984b, Voltage-dependent blockade of muscle Na+ channels by guanidinium toxins: Effect of toxin charge, J. Gen. Physiol. 84:687–704.PubMedCrossRefGoogle Scholar
  62. Moczydlowski, E., Alvarez, O., Vergara, C., and Latorre, R., 1985, Effect of phospholipid surface charge on the conductance and gating of a Ca2+-activated K+-channel in planar lipid bilayers, J. Membr. Biol. 83:273–282.PubMedCrossRefGoogle Scholar
  63. Montai, M., Labarca, P., Fredkin, D. R., and Suarez-Isla, B. A., 1984, Channel properties of the purified acetylcholine receptor from Torpedo californica reconstituted in planar lipid bilayer membranes, Biophys. J. 45:165–174.CrossRefGoogle Scholar
  64. Neher, E., and Steinbach, J. H., 1978, Local anaesthetics transiently block currents through single acetylcholine receptor channels, J. Physiol. (Lond.) 277:153-176.Google Scholar
  65. Neher, E., and Stevens, C. F., 1979, Voltage-driven conformational changes in intrinsic membrane proteins, in: The Neurosciences Fourth Study Program (F. O. Schmitt and F. G. Worden, eds.), pp. 623–629, MIT Press, Cambridge.Google Scholar
  66. Ogden, D. C., Siegelbaum, S. A., and Colquhoun, D., 1981, Block of acetylcholine-activated ion channels by an uncharged local anesthetic, Nature 289:596–598.PubMedCrossRefGoogle Scholar
  67. Patlak, J. B., Gration, K. A. F., and Usherwood, P. N. R., 1979, Single glutamate-activated channels in locust muscle, Nature 278:643–645.PubMedCrossRefGoogle Scholar
  68. Pressman, B. C., 1976, Biological applications of ionophores, Annu. Rev. Biochem. 45:501–530.PubMedCrossRefGoogle Scholar
  69. Rothstein, A., and Ramjeesing, M., 1980, The functional arrangement of the anion channel of red blood cells, Ann. N. Y. Acad. Sci. 358:1–12.PubMedCrossRefGoogle Scholar
  70. Sachs, F., 1984, Automated analysis of single-channel records, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 265–285, Plenum Press, New York.Google Scholar
  71. Sachs, F., Neil, J., and Barkakati, N., 1982, The automated analysis of data from single ionic channels, Pflügers Arch. 395:331–340.PubMedCrossRefGoogle Scholar
  72. Sakmann, B., and Neher, E. (eds.), 1983, Single-Channel Recording, Plenum Press, New York.Google Scholar
  73. Schein, S. J., Kagan, B. L., and Finkelstein, A., 1978, Colicin K acts by forming voltage-dependent pores in phospholipid bilayer membranes, Nature 276:159–163.PubMedCrossRefGoogle Scholar
  74. Sine, S. M., and Steinbach, J. H., 1984, Agonists block currents through acetylcholine receptor channels, Biophys. J. 46:277-284.Google Scholar
  75. Stevens, C. F., 1978, Interactions between intrinsic membrane protein and electric field. An approach to studying nerve excitability, Biophys. J. 22:295–306.PubMedCrossRefGoogle Scholar
  76. Tiepel, J. W., Hass, G. M., and Hill, R. L., 1968, The substrate specificity of fumarase, J. Biol. Chem. 243:5684–5694.Google Scholar
  77. Vanderkooi, J. M., and Martonosi, A., 1971, Sarcoplasmic reticulum. XVI. The permeability of phosphatidylcholine vesicles for calcium, Arch. Biochem. Biophys. 147:632–646.PubMedCrossRefGoogle Scholar
  78. VanHolde, K. E., 1971, Physical Biochemistry, Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  79. Vergara, C., and Latorre, R., 1983, Kinetics of Ca-activated K-channels from rabbit muscle incorporated into planar bilayers: Evidence for a Ca2+ and Ba2+ blockage, J. Gen. Physiol. 82:543–568.PubMedCrossRefGoogle Scholar
  80. Vergara, C., Moczydlowski, E., and Latorre, R., 1984, Conduction, blockage and gating in a Ca2+ — activated K+ channel incorporated into planar lipid bilayers, Biophys. J. 45:73–76.PubMedCrossRefGoogle Scholar
  81. Woodhull, A., 1972, Ionic blockade of sodium channels in nerve, J. Gen. Physiol. 61:687–708.CrossRefGoogle Scholar
  82. Yamamoto, D., and Yeh, J. Z., 1984, Kinetics of 9-aminoacridine block of single Na channels, J. Gen. Physiol. 84:361–377.PubMedCrossRefGoogle Scholar
  83. Yellen, G., 1984a, Ionic permeation and blockade in Ca-activated K-channels of bovine chromaffin cells, J. Gen. Physiol. 84:157–186.PubMedCrossRefGoogle Scholar
  84. Yellen, G., 1984b, Relief of Na+ block of Ca2+-activated K+ channels by external cations, J. Gen. Physiol. 84:187–199.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Edward Moczydlowski
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations