Superoxide Dismutase as a Model Ion Channel

  • Elizabeth D. Getzoff
  • John A. Tainer


Detailed information is now available on the biochemistry and physiology of ion channels; however, with certain exceptions such as gramicidin (Wallace, 1984), far less is known about their structures. Moreover, atomic structures of ion channels may continue to be unobtainable for several years. Consequently, it seems worthwhile to consider how existing data on nonmembrane proteins might be used to suggest structural aspects of ion channels and hence aid in the design of relevant biochemical and physiological experiments. Two aspects of known protein structures are particularly pertinent to understanding the structural possibilities for membrane protein ion channels: the existence and nature of deep invaginations in the external molecular surfaces of proteins, and the role of electrostatic forces in the precollision guidance of ions. In this chapter, we use the high-resolution structure of the protein Cu, Zn Superoxide dismutase (SOD) as a model to illustrate these features, but the conclusions are representative of other known protein structures. In our analysis we make use of computer graphics techniques, which have been exceptionally successful for the display and evaluation of complex three-dimensional information.


Superoxide Dismutase Molecular Surface Metal Binding Site Deep Pocket Phenyl Glyoxal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abernethy, J. L., Steinman, H. ML, and Hill, R. L., 1974, Bovine erythrocyte Superoxide dismutase: Subunit structure and sequence location of the intrasubunit disulfide bonds J. Biol. Chem. 249:7339–7347.PubMedGoogle Scholar
  2. Allison, S. A., Ganti, G., and McCammon, J. A., 1985, Simulation of the diffusion controlled reaction between Superoxide and Superoxide dismutase. I. Simple models, Biopolymers 24:1323–1336.PubMedCrossRefGoogle Scholar
  3. Blaney, J. M., Weiner, P. K., Dearing, A., Kollman, P. A., Jorgensen, E. C., Oatley, S. J., Burridge, J. M., and Blake, C. C. F., 1982, Molecular mechanics simulation of protein-ligand interactions: Binding of thyroid hormone analogues to prealbumin, J. Am. Chem. Soc. 104:6424–6434.CrossRefGoogle Scholar
  4. Connolly, M. L., 1981, Protein surfaces and interiors, Ph.D. Dissertation, University of California, Berkeley.Google Scholar
  5. Connolly, M. L., 1983a, Solvent-accessible surfaces of proteins and nucleic acids, Science 221:709–713.PubMedCrossRefGoogle Scholar
  6. Connolly, M. L., 1983b, Analytical molecular surface calculation, J. Appl. Crystallogr. 16:548-558.Google Scholar
  7. Connolly, M. L., 1985, Depth-buffer algorithms for molecular modeling. J. Mol. Graphics 3:19–24.CrossRefGoogle Scholar
  8. Connolly, M. L., and Olson, A. J., 1985, GRANNY, a companion to GRAMPS for the real-time manipulation of macromolecular models, Computers Chem. 9:1–6.CrossRefGoogle Scholar
  9. Cramer, W. A., Widger, W. R., Herrmann, R. G., and Trebst, A., 1985, Topography and function of thylakoid membrane proteins, Trends Biochem. Sci. 10:125–129.CrossRefGoogle Scholar
  10. Cudd, A., and Fridovich, I., 1982, Electrostatic interactions in the reaction mechanism of bovine erythrocyte Superoxide dismutase, J. Biol. Chem. 257:11443–11447.PubMedGoogle Scholar
  11. Debye, P., 1914, Ann. Phys. 43:4.Google Scholar
  12. Deisenhoffer, J., Epp, O., Miki, K., Huber, R., and Michel, H., 1984, X-ray structure analysis of a membrane protein complex, J. Mol. Biol. 180:385–398.CrossRefGoogle Scholar
  13. Fuller, S. D., Capaldi, R. A., and Henderson, R., 1979, Structure of cytochrome c oxidase in deoxycholate-derived two-dimension crystals, J. Mol. Biol. 134:305–327.PubMedCrossRefGoogle Scholar
  14. Garavito, R. M., and Rosenbusch, J. P., 1980, Three-dimensional crystals of an integral membrane protein: An initial X-ray analysis, J. Cell Biol. 86:327–329.PubMedCrossRefGoogle Scholar
  15. Garavito, R. M., Jenkins, J., Jansonius, J. N., Karlsson, R., and Rosenbusch, J. P., 1983. X-ray diffraction analysis of matrix porin, an integral membrane protein from Escherichia coli outer membranes. J. Mol. Biol. 164:313-327.Google Scholar
  16. Getzoff, E. D., 1982, The refined 2 Å structure of copper, zinc Superoxide dismutase: Implications for stability and catalysis, Ph.D. Dissertation, Duke University, Durham, North Carolina.Google Scholar
  17. Getzoff, E. D., Tainer, J. A., Weiner, P. K., Kollman, P. A., Richardson, J. S., and Richardson, D. C., 1983, Electrostatic recognition between Superoxide and copper, zinc Superoxide dismutase, Nature 306:287–290.PubMedCrossRefGoogle Scholar
  18. Guy, H. R., 1984, A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations, Biophys. J. 45:249–261.PubMedCrossRefGoogle Scholar
  19. Henderson, R., and Unwin, P. N. T., 1975, Three-dimension model of purple membrane obtained by electron microscopy, Nature 257:28–32.PubMedCrossRefGoogle Scholar
  20. Holbrook, S. R., and Kim, S.-H., 1984, Local mobility of nucleic acids as determined from crystallographic data: I. RNA and B form DNA, J. Mol. Biol. 173:361–388.PubMedCrossRefGoogle Scholar
  21. Klug-Roth, D., Fridovich, I., and Rabani, J., 1972, Pulse radiolytic investigations of Superoxide catalyzed disproportionation. Mechanism for bovine Superoxide dismutase, J. Am. Chem. Soc. 95:2786–2790.CrossRefGoogle Scholar
  22. Koppenol, W. H., 1982, On the reactivity of the Superoxide anion and the biological function of Superoxide dismutase, in Oxidases and Related Redox Systems (T. King, M. S. Mason, and M. Morrison, eds.), pp. 127–136, Pergamon Press, Oxford.Google Scholar
  23. Levitt, M., and Chothia, C., 1976, Structural patterns in globular proteins, Nature 261:552–558.PubMedCrossRefGoogle Scholar
  24. Makowski, L., Casper, D. L. D., Phillips, W. C., Baker, T. S., and Goodenough, D. A., 1984, Gap junction structures, Biophys. J. 45:208–218.PubMedCrossRefGoogle Scholar
  25. Malinowski, D. P., and Fridovich, I., 1979, Chemical modification of arginine at the active site of the bovine erythrocyte Superoxide dismutase, Biochemistry 18:5909–5917.PubMedCrossRefGoogle Scholar
  26. O’Donnell, T. J., and Olson, A. J., 1981, GRAMPS—A graphics language interpreter for real-time interactive three-dimensional picture editing and animation, Computer Graphics 15:133.CrossRefGoogle Scholar
  27. Piez, K. A., and Miller, A., 1974, The structure of collagen fibrils, J. Supramol. Struct. 2:121–137.PubMedCrossRefGoogle Scholar
  28. Rabani, J., Klug-Roth, D., and Lilie, J., 1973, Pulse radiolytic investigations of the catalyzed disproportionation of peroxy radicals: Aqueous cupric ions, J. Phys. Chem. 77:1169–1175.CrossRefGoogle Scholar
  29. Richards, F. M., 1977, Areas, volumes, packing, and protein structure, Annu. Rev. Biophys. Bioeng. 6:151–176.PubMedCrossRefGoogle Scholar
  30. Richardson, J. S., 1977, β-sheet topology and the relatedness of proteins, Nature 268:495–500.PubMedCrossRefGoogle Scholar
  31. Richardson, J. S., 1981, The anatomy and taxonomy of protein structure, Adv. Protein Chem. 34:168–339.Google Scholar
  32. Rigo, A., Stevanato, R., Viglino, P., and Rotilio, G., 1977, Competitive inhibition of Cu, Zn Superoxide dismutase by monovalent anions. Biochem. Biophys. Res. Commun. 79:776-783.Google Scholar
  33. Rossman, M. G., and Argos, P., 1981, Protein folding, Annu. Rev. Biochem. 50:497–532.CrossRefGoogle Scholar
  34. Salin, M. L., and Wilson, W. W., 1981, Porcine Superoxide dismutase, Mol. Cell. Biochem. 36:157–161.PubMedCrossRefGoogle Scholar
  35. Swaminathan, S., Ichiye, T., van Gunsteren, W., and Karplus, M., 1982, Time dependence of atomic fluctuation in proteins: Analysis of local and collective motions in bovine pancreatic trypsin inhibitor, Biochemistry 21:5230–5241.PubMedCrossRefGoogle Scholar
  36. Tainer, J. A., Getzoff, E. D., Richardson, J. S., and Richardson, D. C., 1980, in, 2SOD:Cu, Zn Superoxide Dismutase Complete Atomic Coordinates (D. C. Richardson and J. S. Richardson, eds.), Brookhaven Protein Structure Data Bank.Google Scholar
  37. Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S., and Richardson, D. C., 1982, Determination and analysis of the 2 Å structure of copper, zinc Superoxide dismutase, J. Mol. Biol. 160:181–217.PubMedCrossRefGoogle Scholar
  38. Tainer, J. A., Getzoff, E. D., Richardson, J. S., and Richardson, D. C., 1983a, Structure and mechanism of copper, zinc Superoxide dismutase, Nature 306:284–287.PubMedCrossRefGoogle Scholar
  39. Tainer, J. A., Getzoff, E. D., Connolly, M. L., and Olson, A. J., 1983b, Topography of protein surfaces, Fed. Proc. 42:1998.Google Scholar
  40. Tainer, J. A., Getzoff, E. D., Alexander, H., Houghten, R. A., Olson, A. J., Lerner, R. A., and Hendrickson, W. A., 1984, The reactivity of anti-peptide antibodies is a function of the atomic mobility of sites in a protein. Nature 312:127–133.PubMedCrossRefGoogle Scholar
  41. Tainer, J. A., Getzoff, E. D., Paterson, Y., Olson, A. J., and Lerner, R. A., 1985a, The atomic mobility a component of protein antigenicity, Annu. Rev. Immunol. 3:501–535.PubMedCrossRefGoogle Scholar
  42. Tainer, J. A., Getzoff, E. D., Sayre, J., and Olson, A. J., 1985b, Modeling intermolecular interactions: Topography, mobility, and electrostatic recognition, J. Mol. Graphics 3:103–105.Google Scholar
  43. Thomas, K. A., Rubin, B. H., Bier, J. C., Richardson, J. S., and Richardson, D. C., 1974, The crystal structure of bovine Cu2+Zn2+ Superoxide dismutase at 5.5 Å resolution, J. Biol. Chem. 249:5677–5683.PubMedGoogle Scholar
  44. Wallace, B. A., 1984, Ion-bond forms of the gramicidin A transmembrane channel. Biophys. J. 45:114–116.PubMedCrossRefGoogle Scholar
  45. Weiner, P. K., and Kollman, P. A. 1981, AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions, J. Comput. Chem. 2:287–303.CrossRefGoogle Scholar
  46. Yager, P., Chang, E. L., Williams, R. W., and Dalziel, A. W., 1984, The secondary structure of acetylcholine receptor reconstituted in a single lipid component as determined by Raman spectroscopy, Biophys. J. 45:26–28.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Elizabeth D. Getzoff
    • 1
  • John A. Tainer
    • 1
  1. 1.Department of Molecular BiologyResearch Institute of Scripps ClinicLa JollaUSA

Personalised recommendations