Advertisement

Voltage Gating in VDAC

Toward a Molecular Mechanism
  • Marco Colombini

Abstract

The reconstitution of transport systems into phospholipid bilayer membranes was originally undertaken in order to gain new insights into the structure and mechanism of action of these molecular machines. This goal is being achieved as evidenced by the contents of this book. This chapter deals with some of the results obtained from studies performed on a reconstituted channel-forming protein isolated from mitochondria. It focuses on the results that yield information on the molecular mechanism that causes this channel to be voltage-gated.

Keywords

Outer Membrane Voltage Gating Pore Radius Closed State Voltage Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blatz, A. L., and Magleby, K. L., 1983, Single voltage-dependent chloride-selective channels of large conductance in cultured rat muscle, Biophys. J. 43:237–241.PubMedCrossRefGoogle Scholar
  2. Bowen, K. A., Tam, K., and Colombini, M., 1985, Evidence for titratable gating charges controlling the voltage-dependence of the outer mitochondrial membrane channel, VDAC, J. Memb. Biol. 86:51–59.CrossRefGoogle Scholar
  3. Colombini, M., 1979, A candidate for the permeability pathway of the outer mitochondrial membrane, Nature 279:643–645.PubMedCrossRefGoogle Scholar
  4. Colombini, M., 1980a, Structure and mode of action of a voltage-dependent anion-selective channel (VDAC) located in the outer mitochondrial membrane, Ann. N.Y. Acad. Sci. 341:552–563.PubMedCrossRefGoogle Scholar
  5. Colombini, M., 1980b, The pore size and properties of channels from mitochondria isolated from Neurospora crassa, J. Memb. Biol. 53:79–84.CrossRefGoogle Scholar
  6. Colombini, M., 1983, Purification of VDAC (voltage-dependent anion-selective channel) from rat liver mitochondria, J. Memb. Biol. 74:115–121.CrossRefGoogle Scholar
  7. Colombini, M., 1984, A novel mechanism for voltage control of channel conductance, J. Theor. Biol. 110:559–567.PubMedCrossRefGoogle Scholar
  8. Döring, C., and Colombini, M., 1984, On the nature of the molecular mechanism underlying the voltage dependence of the channel-forming protein, VDAC, Biophys. J. 45:44–46.PubMedCrossRefGoogle Scholar
  9. Döring, C., and Colombini, M., 1985a, Voltage dependence and ion selectivity of the mitochondrial channel, VDAC, are modified by succinic anhydride, J. Memb. Biol. 83:81–86.CrossRefGoogle Scholar
  10. Döring, C., and Colombini, M., 1985b, The mitochondrial voltage-dependent channel, VDAC, is modified asymmetrically by succinic anhydride, J. Memb. Biol. 83:87–94.CrossRefGoogle Scholar
  11. Eisenberg, M., Hall, J. E., and Mead, C. A., 1973, The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes, J. Memb. Biol. 14:143–176.CrossRefGoogle Scholar
  12. Ernster, L., and Kuylenstierna, B., 1970, Outer membrane of mitochondira, in: Membranes of Mitochondria and Chloroplasts (E. Racker, ed.), p. 205, Van Nostrand Reinhold, New York.Google Scholar
  13. Fiek, C., Benz, R., Roos, N., and Brdiczka, D., 1982, Evidence for identity between the hexokinase binding protein and the mitochondrial porin in the outer membrane of rat liver mitochondria, Biochim. Biophys. Acta 688:429–440.PubMedCrossRefGoogle Scholar
  14. Freitag, H., Neupert, W., and Benz, R., 1982, Purification and characterization of a pore protein of the outer mitochondrial membrane from Neurospora crassa, Eur. J. Biochem. 123:629–636.CrossRefGoogle Scholar
  15. Habeeb, A. F. S. A., Cassidy, H. G., and Singer, S. J., 1958, Molecular structural effects produced in proteins by reaction with succinic anhydride, Biochim. Biophys. Acta 29:587–593.PubMedCrossRefGoogle Scholar
  16. Hall, J. E., Vodyanoy, I., Balasubramanian, T. M., and Marshall, G. R., 1984, Alamethicin, a rich model for channel behavior, Biophys. J. 45:233–247.PubMedCrossRefGoogle Scholar
  17. Heyer, E. J., Müller, R. U., and Finkelstein, A., 1976, Inactivation of monazomycin-induced voltage-dependent conductance in thin lipid membranes, J. Gen. Physiol. 67:731–748.PubMedCrossRefGoogle Scholar
  18. Kagan, B. L., Finkelstein, A., and Colombini, M., 1981, Diphtheria toxin fragment forms large pores in phospholipid bilayer membranes, Proc. Natl. Acad. Sci. U.S.A. 78:4950–4954.PubMedCrossRefGoogle Scholar
  19. Kulkarni, S. V., 1984, Sizing the closed state of the mitochondrial channel, VDAC, Thesis, Department of Zoology, University of Maryland, College Park, Maryland.Google Scholar
  20. Linden, M., and Gellerfors, P., 1983, Hydrodynamic properties of porin isolated from other membranes of rat liver mitochondria, Biochim. Biophys. Acta 736:125–129.PubMedCrossRefGoogle Scholar
  21. Linden, M., Gellerfors, P., and Nelson, B. D., 1982a, Purification of a protein having pore forming activity from the rat liver mitochondrial outer membrane, Biochem. J. 208:77–82.PubMedGoogle Scholar
  22. Linden, M., Gellerfors, P., and Nelson, B.D., 1982b, Pore protein and the hexokinase-binding protein from the outer membrane of rat liver mitochondria are identical, FEBS Lett. 141:189–192.PubMedCrossRefGoogle Scholar
  23. Mannella, C. A., 1981, Structure of the outer mitochondrial membrane. Detection of in-plane subunit structure, Biochim. Biophys. Acta 645:33–40.PubMedCrossRefGoogle Scholar
  24. Mannella, C. A., 1982, Structure of the outer mitochondrial membrane: Ordered arrays of porelike subunits in outer-membrane fractions from Neurospora crassa mitochondria, J. Cell Biol. 94:680–687.PubMedCrossRefGoogle Scholar
  25. Mannella, C. A., and Bonner, W. D., Jr., 1975, X-ray diffraction from oriented outer mitochondrial membranes, Biochim. Biophys. Acta 413:226–233.PubMedCrossRefGoogle Scholar
  26. Mannella, C. A., and Colombini, M., 1984, Evidence that the crystalline arrays in the outer membrane of Neurospora mitochondria are composed of the channel protein, VDAC, Biochim. Biophys. Acta 774:206–214.PubMedCrossRefGoogle Scholar
  27. Mannella, C. A., and Ratkowski, A. J., 1979, Structure of the pore complex in the outer membrane of mitochondria, J. Cell Biol. 83:270a.Google Scholar
  28. Mannella, C. A., Colombini, M., and Frank, J., 1983, Structural and functional evidence for multiple channel complexes in the outer membrane of Neurospora crassa mitochondria, Proc. Natl. Acad. Sci. U.S.A. 80:2243–2247.PubMedCrossRefGoogle Scholar
  29. Mannella, C. A., Radermacher, M., and Frank, J., 1984, Three-dimensional structure of mitochondrial outer-membrane channels from fungus and liver, Proc. Annu. EMSA Meet. 42:644–645.Google Scholar
  30. Nakashima, R. A., Mangan, P. S., and Pedersen, P. L., 1985, Evidence for a relationship between hexokinase-binding and the mitochondrial VDAC protein in AS-30D hepatoma cells: DCCD labels the pore protein and inhibits hexokinase binding, Biophys. J. 47:238a.Google Scholar
  31. Nelson, D. J., Tang, J. M., and Palmer, L. G., 1984, Single-channel recordings of apical membrane chloride conductance in A6 epithelial cells, J. Memb. Biol. 80:81–89.CrossRefGoogle Scholar
  32. Ostlund, A. K., Gohring, U., Krause, J., and Brdiczka, D., 1983, The binding of glycerol kinase to the outer-membrane of rat liver mitochondria. Its importance in metabolic regulation, Biochem. Med. 30:231–245.PubMedCrossRefGoogle Scholar
  33. Parsons, D. F., Bonner, W. D., Jr., and Verboon, J. G., 1965, Electron microscopy of isolated plant mitochondria and plastids using both thin-section and negative staining techniques, Can. J. Bot. 43:647–655.CrossRefGoogle Scholar
  34. Pfaff, E., Klingenberg, E., Ritt, E., and Vogell, W., 1968, Korrelation des unspezifisch permeablen mitochondrialen Raumes mit dem “Intermembrane-Raum,” Eur. J. Biochem. 5:222–232.PubMedCrossRefGoogle Scholar
  35. Roos, N., Benz, R., and Brdiczka, D., 1982, Identification and characterization of the pore-forming protein in the outer membrane of rat liver mitochondria, Biochim. Biophys. Acta 686:204–214.PubMedCrossRefGoogle Scholar
  36. Schein, S. J., Colombini, M., and Finkelstein, A., 1976, Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from Paramecium mitochondria, J. Memb. Biol. 30:99–120.CrossRefGoogle Scholar
  37. Smack, D. P., and Colombini, M., 1985, Voltage-dependent channels found in the membrane fraction of corn mitochondria, Plant Physiol. (in press).Google Scholar
  38. Tzagoloff, A., 1982, Mitochondria, pp. 115, 307-317, Plenum Press, New York.Google Scholar
  39. Werkheiser, W. C., and Bartley, W., 1957, The study of steady-state concentrations of internal solutes of mitochondria by rapid centrifugal transfer to a fixation medium, Biochem. J. 66:79–91.PubMedGoogle Scholar
  40. Wojtczak, L., and Zaluska, H., 1969, On the permeability of the outer mitochondrial membrane to cytochrome c. I. Studies on whole mitochondria, Biochim. Biophys. Acta 193:64–72.PubMedCrossRefGoogle Scholar
  41. Zalman, L. S., Nikaido, H., and Kagawa, Y., 1980, Mitochondrial outer membrane contains a protein producing nonspecific diffusion channels, J. Biol. Chem. 255:1771–1774.PubMedGoogle Scholar
  42. Zimmerberg, J., and Parsegian, V. A., 1984, Polymer-inaccessible space as a measure of the volume change during channel opening and closing: VDAC channels, Biophys. J. 45:59a.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Marco Colombini
    • 1
  1. 1.Laboratories of Cell Biology, Department of ZoologyUniversity of MarylandCollege ParkUSA

Personalised recommendations