Blocking Pharmacology of Batrachotoxin-Activated Sodium Channels

  • Edward Moczydlowski
  • Akira Uehara
  • Sherwood Hall


Biochemical progress toward the mechanism of voltage-dependent Na+ channels has enjoyed the benefit of an extensive molecular pharmacology that includes natural specific toxins as well as synthetic chemical probes of this channel. The recently introduced method of studying chemically activated Na+ channels in planar lipid bilayers with the use of batrachotoxin (Krueger et al., 1983) makes it possible to examine functional manifestations of Na+-channel pharmacology at the level of individual channel macromolecules. In this chapter, we summarize the results of our investigations of the blocking of batrachotoxin-activated Na+ channels from rat skeletal muscle by three classes of pharmacological agents: specific guanidinium toxins, synthetic organic cations, and local anesthetics.


Local Anesthetic Sodium Channel Voltage Dependence Organic Cation Dissociation Rate Constant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albuquerque, E. X., Brookes, N., Onur, R., and Warnick, J. E., 1976, Kinetics of interaction of batrachotoxin and tetrodotoxin on rat diaphram muscle, Mol. Pharmacol. 12:82–91.PubMedGoogle Scholar
  2. Armstrong, C. M., 1975, Potassium pores of nerve and muscle membranes, in: Membranes: A Series of Advances (G. Eisenman, ed.), pp. 325-358, Marcel Dekker, New York.Google Scholar
  3. Bell, J. E., and Miller, C., 1984, Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum, Biophys. J. 45:279–287.PubMedCrossRefGoogle Scholar
  4. Cahalan, M. D., and Almers, W., 1979, Interactions between quaternary lidocaine, the sodium channel gates, and tetrodotoxin, Biophys. J. 27:39–56.PubMedCrossRefGoogle Scholar
  5. Creveling, C. R., McNeal, E. T., Daley, J. W., and Brown, G. B., 1983, Batrachotoxin-induced depolarization and [3H]bactrachotoxinin-A 20 α-benzoate binding in a vesicular preparation from guinea pig cerebral cortex: Inhibition by local anesthetics, Mol. Pharmacol. 23:350–358.PubMedGoogle Scholar
  6. Cruz, L. J., Gray, W. R., Olivera, B. M., Zeikus, R. D., Kerr, L., Yoshikami, D., and Moczydlowski, E., 1985, Conus geographus toxins that discriminate between neuronal and muscle sodium channels, J. Biol. Chem. 260:9280–9288.PubMedGoogle Scholar
  7. French, R. J., Worley, J. F., and Krueger, B. K., 1984, Voltage-dependent block by saxitoxin of sodium channels incorporated in planar lipid bilayers, Biophys. J. 45:301–312.PubMedCrossRefGoogle Scholar
  8. Hall, S., 1982, Toxins and Toxicity of Protogonyaulax from the Northeast Pacific, Ph.D. Thesis. University of Alaska, Fairbanks.Google Scholar
  9. Hall, S., Reichardt, P. B., and Neve, R. A., 1980, Toxins extracted from an Alaskan isolate of Protogonyaulax sp, Biochem. Biophys. Res. Commun. 97:649–653.PubMedCrossRefGoogle Scholar
  10. Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Catterall, W. A., and Montai, M., 1985, Functional reconstitution of the purified brain sodium channel in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 82:240–244.PubMedCrossRefGoogle Scholar
  11. Henderson, R., Ritchie, J. M., and Strichartz, G. R., 1974, Evidence that tetrodotoxin and saxitoxin act at a metal cation binding site in the sodium channel of nerve membrane, Proc. Natl. Acad. Sci. U.S.A. 71:3936–3940.PubMedCrossRefGoogle Scholar
  12. Hille, B., 1975, The receptor for tetrodotoxin and saxitoxin: A structural hypothesis, Biophys. J. 15:615–619.PubMedCrossRefGoogle Scholar
  13. Hille, B., 1977a, The pH-dependent rate of action of local anesthetics on the node of Ranvier, J. Gen. Physiol. 69:475–496.PubMedCrossRefGoogle Scholar
  14. Hille, B., 1977b, Local anesthetics: Hydrophilic and hydrophobic pathways for the drug-receptor reaction, J. Gen. Physiol. 69:497–515.PubMedCrossRefGoogle Scholar
  15. Hille, B., Ritchie, J. R., and Strichartz, G. R., 1975, The effect of surface charge on the nerve membrane in the action of tetrodotoxin and saxitoxin in frog myelinated nerve, J. Physiol. (Lond.) 250:34-35P.Google Scholar
  16. Horn, R., Patlak, J., and Stevens, C. F., 1981, The effect of tetramethylammonium on single sodium channel currents, Biophys. J. 36:321–327.PubMedCrossRefGoogle Scholar
  17. Huang, L. M., and Ehrenstein, G., 1981, Local anesthetics QX-572 and benzocaine act at separate sites on the batrachotoxin-activated sodium channel, J. Gen. Physiol. 77:137–153.PubMedCrossRefGoogle Scholar
  18. Jencks, W. P., 1981, On the attribution and additivity of binding energies, Proc. Natl. Acad. Sci. U.S.A. 78:4046–4050.PubMedCrossRefGoogle Scholar
  19. Kao, C. Y., and Nishiyama, A., 1965, Action of saxitoxin on peripheral neuromuscular systems, J. Physiol. (Lond.) 180:50-66.Google Scholar
  20. Kao, C. Y., and Walker, S. E., 1982, Active groups of saxitoxin and tetrodotoxin as deduced from actions of saxitoxin analogues on frog muscle and squid axon, J. Physiol. (Lond.) 323:619-637.Google Scholar
  21. Khodorov, B. L., Peganov, E. M., Revenko, S. V., and Shishkova, L. D., 1975, Sodium currents in voltage clamped nerve fiber of frog under the combined action of batrachotoxin and procaine, Brain Res. 84:541–546.PubMedCrossRefGoogle Scholar
  22. Krueger, B. K., Worley, J. F., and French, R. J., 1983, Single sodium channels from rat brain incorporated into planar lipid bilayer membranes, Nature 303:172–175.PubMedCrossRefGoogle Scholar
  23. McLaughlin, S., 1977, Electrostatic potentials at membrane-solution interfaces, Curr. Top. Membr. Transport 9:71–144.CrossRefGoogle Scholar
  24. Miller, J. A., Agnew, W. S., and Levinson, S. R., 1983, Principal glycopeptide of the tetrodotoxin/ saxitoxin binding protein from Electrophorus electricus: Isolation and partial chemical and physical characterization, Biochemistry 22:462–470.PubMedCrossRefGoogle Scholar
  25. Moczydlowski, E., Garber, S. S., and Miller, C., 1984a, Batrachotoxin-activated Na+ channels in planar lipid bilayers: Competition of tetrodotoxin block by Na+, J. Gen. Physiol. 84:665–686.PubMedCrossRefGoogle Scholar
  26. Moczydlowski, E., Hall, S., Garber, S. S., Strichartz, G. S., and Miller, C., 1984b, Voltage-dependent blockade of muscle Na+ channels by guanidinium toxins: Effect of toxin charge, J. Gen. Physiol. 84:687–704.PubMedCrossRefGoogle Scholar
  27. Postma, S. W., and Catterall, W. A., 1984, Inhibition of binding of [3H]batrachotoxin in A 20-α-benzoate to sodium channels by local anesthetics, Mol. Pharmacol. 25:219–227.PubMedGoogle Scholar
  28. Rogers, R. S., and Rapoport, H., 1980, The pKa’s of saxitoxin, J. Am. Chem. Soc. 102:7335–7339.CrossRefGoogle Scholar
  29. Sato, S., Nakamura, H., Ohizumi, Y., Kobayashi, J., and Hirata, Y., 1983, The amino acid sequences of homologous hydroxyproline-containing myotoxins from the marine snail Conus geographus venom, FEBS Lett. 155:277–280.PubMedCrossRefGoogle Scholar
  30. Shimizu, Y., Hsu, C., Fallon, W. E., Oshima, Y., Miura, I., and Nokanishi, K., 1978, Structure of neosaxitoxin, J. Am. Chem. Soc. 100:6791–6793.CrossRefGoogle Scholar
  31. Shimizu, Y., Hsu, C., and Genenah, A., 1981, Structure of saxitoxin in solution and stereochemistry of dihydrosaxitoxins, J. Am. Chem. Soc. 103:605–609.CrossRefGoogle Scholar
  32. Strichartz, G. R., 1973, The inhibition of sodium currents in myelinated nerve by quaternary derivatives of lidocaine, J. Gen. Physiol. 62:37–57.PubMedCrossRefGoogle Scholar
  33. Strichartz, G., 1976, Molecular mechanisms of nerve block by local anesthetics, Anesthesiology 45:421–441.PubMedCrossRefGoogle Scholar
  34. Strichartz, G., 1984, Structural determinants of the affinity of saxitoxin for neuronal sodium channels: Electrophysiological studies on frog peripheral nerve, J. Gen. Physiol. 84:281–305.PubMedCrossRefGoogle Scholar
  35. Strichartz, G. R., and Ritchie, J. M., 1985, The action of local anesthetics on ion channels of excitable tissues, in: Handbook of Experimental Pharmacology: Local Anesthetics (G. Strichartz, ed.), Springer, New York (in press).Google Scholar
  36. Woodhull, A., 1973, Ionic blockage of sodium channels in nerve, J. Gen. Physiol. 61:687–708.PubMedCrossRefGoogle Scholar
  37. Yamamoto, D., and Yeh, J. Z., 1984, Kinetics of 9-aminoacridine block of single Na channels, J. Gen. Physiol. 84:361–377.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Edward Moczydlowski
    • 1
  • Akira Uehara
    • 2
  • Sherwood Hall
    • 3
  1. 1.Department of Physiology and BiophysicsUniversity of Cincinnati College of MedicineCincinnatiUSA
  2. 2.Department of PhysiologyFukuoka University School of MedicineFukuokaJapan
  3. 3.Food and Drug AdministrationUSA

Personalised recommendations