Ion Conduction Through Sodium Channels in Planar Lipid Bilayers

  • O. S. Andersen
  • W. N. Green
  • B. W. Urban


Ion-permeable channels often derive their generic names from the specialized conductance and permeability properties they possess, the voltage-dependent Na+ channel being no exception. Apart from their use in identifying ion channels, measurements of ion selectivities and single-channel conductances also provide insight into the biophysical mechanisms underlying ion permeation through the channels. Such measurements and their interpretations may be ambiguous, even in the case of channels incorporated into the comparatively simple planar lipid bilayers. Using the voltage-dependent Na+ channel as an example, we show in this chapter that, even though the lipid bilayer system offers many experimental advantages, the determination and the analysis of single-channel conductance and permeability data are not always simple.


Lipid Bilayer Sodium Channel Permeability Characteristic Planar Lipid Bilayer Bovine Chromaffin Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, O. S., 1983a, Ion movement through gramicidin A channels. Single-channel measurements at very high potentials, Biophys. J. 41:119–133.PubMedCrossRefGoogle Scholar
  2. Andersen, O. S., 1983b, Ion movement through gramicidin A channels. Studies on the diffusioncontrolled association step, Biophys. J. 41:147–165.PubMedCrossRefGoogle Scholar
  3. Andersen, O. S., and Müller, R. U., 1982, Monazomycin-induced single channels. I. Characterization of the elementary conductance events, J. Gen. Physiol. 80:403–426.PubMedCrossRefGoogle Scholar
  4. Auerbach, A., and Sachs, F., 1984, Single-channel currents from acetylcholine receptors in embryonic chick muscle, Biophys J. 45:187–198.PubMedCrossRefGoogle Scholar
  5. Barchi, R. L., 1983, Protein components of the purified sodium channel from rat skeletal muscle sarcolemma, J. Neurochem. 40:1377–1385.PubMedCrossRefGoogle Scholar
  6. Bell, J. E., and Miller, C., 1984, Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum, Biophys. J. 45:279–287.PubMedCrossRefGoogle Scholar
  7. Cachelin, A. B., De Peyer, J. E., Kokubun, S., and Reuter, H., 1983, Sodium channels in cultured cardiac cells, J. Physiol. (Lond.) 340:389-401.Google Scholar
  8. Cahalan, M., and Begenisich, T., 1976, Sodium channel selectivity. Dependence on internal permeant ion concentration, J. Gen. Physiol. 68:111–125.PubMedCrossRefGoogle Scholar
  9. Campbell, D. T., 1976, Ionic selectivity of the sodium channel of frog skeletal muscle, J. Gen. Physiol. 67:295–307.PubMedCrossRefGoogle Scholar
  10. Chandler, W. K., and Meves, H., 1965, Voltage clamp experiments on internally perfused giant axons, J. Physiol. (Lond.) 180:788-820.Google Scholar
  11. Dubois, J. M., Schneider, M. F., and Khodorov, B. I., 1983, Voltage dependence of intramembrane charge movement and conductance activation of batrachotoxin-modified sodium channels in frog node of Ranvier, J. Gen. Physiol. 81:829–844.PubMedCrossRefGoogle Scholar
  12. Eisenberg, M., Hall, J. E., and Mead, C. A., 1973, The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes, J. Membrane. Biol. 14:143–176.CrossRefGoogle Scholar
  13. Eisenman, G., Sandblom, J., and Neher, E., 1978, Interactions in cation permeation through the gramicidin channel. Cs, Rb, K, Na, Li, Tl, and effects of anion binding, Biophys. J. 22:307–340.PubMedCrossRefGoogle Scholar
  14. * Batrachotoxin may produce significant alterations in the overall permeation pathway, as the normally completely impermeable methylammonium (Hille, 1971) seems to be able to permeate through BTX-modified Na+ channels (Khodorov and Revenko, 1979). The significance of this finding should, however, be evaluated in light of the possible alterations of the intracellular ionic composition that could be effected by the extracellular solution changes.Google Scholar
  15. Fenwich, E. M., Marty, A., and Neher, E., 1982, Sodium and calcium channels in bovine chromaffin cells, J. Physiol. (Land.) 331:599-635.Google Scholar
  16. Finkelstein, A., and Mauro, A., 1977, Physical principles and formalisms of electrical excitability, in: Handbook of Physiology, Sect. 1: The Nervous System, Vol. 1, Part 1 (E. R. Kandel, ed.), pp. 161-213, American Physiological Society, Washington.Google Scholar
  17. Fukushima, Y., 1981, Identification and kinetic properties of the current through a single Na+ channel, Proc. Natl. Acad. Sci. U.S.A. 78:1274–1277.PubMedCrossRefGoogle Scholar
  18. Goldman, D. E., 1943, Potential, impedance and rectification in membranes, J. Gen. Physiol. 27:37–60.PubMedCrossRefGoogle Scholar
  19. Green, W. N., Weiss, L. B., and Andersen, O. S., 1984, Batrachotoxin-modified sodium channels in lipid bilayers, Ann. N.Y. Acad. Sci. 435:548–550.CrossRefGoogle Scholar
  20. Green, W. N., Weiss, L. B., and Andersen, O. S., 1986a, Batrachotoxin modified sodium channels from canine forebrain in lipid bilayers. I. Ion permeation and block, J. Gen. Physiol. (submitted).Google Scholar
  21. Green, W. N., Weiss, L. B., and Andersen, O. S., 1986b, Batrachotoxin modified sodium channels from canine forebrain in lipid bilayers. III. Characterization of the saxitoxin-and tetrodotoxininduced block, J. Gen. Physiol. (submitted).Google Scholar
  22. Hanke, W., Boheim, G., Barhanin, J., Pauron, D., and Lazdunski, M., 1984, Reconstitution of highly purified saxitoxin-sensitive Na+-channels into planar lipid bilayers, EMBO J. 3:509–515.PubMedGoogle Scholar
  23. Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Catterall, W. A., and Montai, M., 1985, Functional reconstitution of the purified brain sodium channel in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 82:240–244.PubMedCrossRefGoogle Scholar
  24. Heckmann, K., 1972, Single file diffusion, in: Biomembranes, Vol. 3 (F. Kreuzer and J.F.G. Siegers, eds.), pp. 127–153, Plenum Press, London.Google Scholar
  25. Hille, B., 1971, The permeability of the sodium channel to organic cations in myelinated nerve, J. Gen. Physiol. 58:599–619.PubMedCrossRefGoogle Scholar
  26. Hille, B., 1972, The permeability of the sodium channel to metal cations in myelinated nerve, J. Gen. Physiol. 59:637–658.PubMedCrossRefGoogle Scholar
  27. Hille, B., 1975, Ionic selectivity, saturation and block in sodium channels: A four barrier model, J. Gen. Physiol. 66:535–560.PubMedCrossRefGoogle Scholar
  28. Hille, B., and Schwarz, W., 1978, Potassium channels as multi-ion single-file pores, J. Gen. Physiol. 72:409–442.PubMedCrossRefGoogle Scholar
  29. Hodgkin, A. L., and Katz, B., 1949, The effect of sodium ions on the electrical activity of the giant axon of squid, J. Physiol. (Lond.) 108:37-77.Google Scholar
  30. Hodgkin, A. L., and Keynes, R. D., 1955, The potassium permeability of a giant nerve fibre, J. Physiol. (Lond.) 128:61-88.Google Scholar
  31. Horn, R., Patlak, J., and Stevens, C. F., 1981, The effect of tetramethylammonium on single sodium channel currents, Biophys. J. 36:321–327.PubMedCrossRefGoogle Scholar
  32. Horn, R., Vandenberg, C. A., and Lange, K., 1984, Statistical analysis of single sodium channels. Effects of N-bromoacetamide, Biophys. J. 45:323–335.PubMedCrossRefGoogle Scholar
  33. Huang, L. Y. M., Catterall, W. A., and Ehrenstein, G., 1979, Comparison of ionic selectivity of batrachotoxin-activated channels with different tetrodotoxin dissociation constants, J. Gen. Physiol. 73:839–854.PubMedCrossRefGoogle Scholar
  34. Huang, L. Y. M., Moran, N., and Ehrenstein, G., 1982, Batrachotoxin modifies the gating kinetics of sodium channels in internally perfused neuroblastoma cells, Proc. Natl Acad. Sci. U.S.A. 79:2082–2085.PubMedCrossRefGoogle Scholar
  35. Huang, L. Y. M., Moran, N., and Ehrenstein, G., 1984, Gating kinetics of batrachotoxin-modified sodium channels in neuroblastoma cells determined from single-channel measurements, Biophys. J. 45:313–322.PubMedCrossRefGoogle Scholar
  36. Khodorov, B., and Revenko, S. V., 1979, Further analysis of the mechanisms of action of batrachotoxin on the membrane of myelinated nerve, Neuroscience 4:1315–1330.PubMedCrossRefGoogle Scholar
  37. Krueger, B. K., Worley, J. F., and French, R. J., 1983, Single sodium channels from rat brain incorporated into planar lipid bilayer membranes, Nature 303:172–175.PubMedCrossRefGoogle Scholar
  38. Läuger, P., Stephen, W., and Frehland, E., 1980, Fluctuations of barrier structure in ionic channels, Biochim. Biophys. Atta 602:167–180.CrossRefGoogle Scholar
  39. Mazet, J. L., Andersen, O. S., and Koeppe, R. E., 1984, Single-channel studies on linear gramicidins with altered amino acid sequences, Biophys. J. 45:263–276.PubMedCrossRefGoogle Scholar
  40. Miller, J. A., Agnew, W. S., and Levinson, S. R., 1983, Principal glycopeptide of the tetrodotoxin/ saxitoxin binding protein from electrophorus electricus: Isolation and partial chemical and physical characterization, Biochemistry 22:462–470.PubMedCrossRefGoogle Scholar
  41. Moczydlowski, E., Garber, S. S., and Miller, C., 1984, Batrachotoxin-activated Na+ channels in planar lipid bilayers: Competition of tetrodotoxin block by Na+, J. Gen. Physiol. 84:665–686.PubMedCrossRefGoogle Scholar
  42. Nagy, K., Kiss, T., and Hof, D., 1983, Single Na channels in mouse neuroblastoma cell membrane. Indications for two open states, Pfluegers Arch. 399:302–308.CrossRefGoogle Scholar
  43. Overbeek, J. T. G., 1956, The Donnan equilibrium, Prog. Biophys. 6:57–84.Google Scholar
  44. Plettig, V., 1930, Über die Diffusionspotentiale, Ann. Phys. 5:735–761.CrossRefGoogle Scholar
  45. Quandt, F. N., and Narahashi, T., 1982, Modification of single Na+ channels by batrachotoxin, Proc. Natl. Acad. Sci. U.S.A. 79:6732–6736.PubMedCrossRefGoogle Scholar
  46. Rosenberg, R. L., Tomiko, S. A., and Agnew, W. S., 1984, Single-channel properties of the reconstituted voltage-regulated Na channel isolated from the eel electroplax of Electrophorus electricus, Proc. Natl. Acad. Sci. U.S.A. 81:5594–5598.CrossRefGoogle Scholar
  47. Sachs, F., 1983, Automated analysis of single-channel records, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 265–285. Plenum Press, New York.CrossRefGoogle Scholar
  48. Sachs, F., Neil, J., and Barkakati, N., 1982, The automated analysis of data from single ionic channels, Pfluegers Arch. 395:331–340.CrossRefGoogle Scholar
  49. Sailing, N., and Siggaard-Andersen, O., 1971, Liquid-junction potentials between plasma or erythrolysate and KC1 solutions, Scand. J. Clin. Lab. Invest. 28:33–40.CrossRefGoogle Scholar
  50. Sigworth, F. J., and Neher, E., 1980, Single Na+ channel currents observed in cultured rat muscle cells, Nature 287:447–449.PubMedCrossRefGoogle Scholar
  51. Sigworth, F. J., and Spalding, B. C., 1980, Chemical modification reduce the conductance of sodium channels in nerve, Nature 283:293–295.PubMedCrossRefGoogle Scholar
  52. Tanaka, J. C., Eccleston, J. F., and Barchi, R. L., 1983, Cation selectivity characteristics of the reconstituted voltage-dependent sodium channel purified from rat skeletal muscle sarcolemma, J. Biol. Chem. 258:7519–7526.PubMedGoogle Scholar
  53. Tanguy, J., Yeh, J. Z., and Narahashi, T., 1984, Interaction of batrachotoxin with sodium channels in squid axons, Biophys. J. 45:184a.Google Scholar
  54. tenEick, R., Yeh, J., and Matsuki, N., 1984, Two types of voltage dependent Na channels suggested by differential sensitivity of single channels to tetrodotoxin, Biophys. J. 45:70–73.PubMedCrossRefGoogle Scholar
  55. Urban, B. W., and Hladky, S. B., 1979, Ion transport in the simplest single file pore, Biochim. Biophys. Acta 554:410–429.PubMedCrossRefGoogle Scholar
  56. Urban, B. W., Weiss, L. B., Green, W. N., and Andersen, O. S., 1986, Batrachotoxin modified sodium channels from canine forebrain in lipid bilayers. II. Steady-state voltage activation, J. Gen. Physiol. (submitted).Google Scholar
  57. Ussing, H. H., 1949, The active ion transport through the isolated frog skin in the light of tracer studies, Acta Physiol. Scand. 17:1–37.PubMedCrossRefGoogle Scholar
  58. Wong, J. T. F., 1975, Kinetics of Enzyme Mechanisms, Academic Press, New York.Google Scholar
  59. Worley, J. F., French, R. J., and Krueger, B. K., 1985, Interactions of divalent cations with single sodium channels, Biophys. J. 47:439a.Google Scholar
  60. Yamamoto, D., Yeh, J. Z., and Narahashi, T., 1984, Voltage-dependent calcium block of normal and tetramethrin-modified sodium channels, Biophys. J. 45:337–344.PubMedCrossRefGoogle Scholar
  61. Yellen, G., 1984, Ionic permeation and blockade in Ca2+-activated K+ channels of bovine chromaffin cells, J. Gen. Physiol. 84:157–186.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • O. S. Andersen
    • 1
  • W. N. Green
    • 1
  • B. W. Urban
    • 1
  1. 1.Department of Physiology and Biophysics and Department of AnesthesiologyCornell University Medical CollegeNew YorkUSA

Personalised recommendations