Advertisement

Reconstitution of the Sodium Channel from Electrophorus Electricus

  • W. S. Agnew
  • R. L. Rosenberg
  • S. A. Tomiko

Abstract

The sodium (Na+) channel that transiently depolarizes nerve and muscle membranes in the initial phase of the action potential (Hodgkin and Huxley, 1952; Cahalan, 1980) is perhaps the archetypical voltage-gated channel. Advances in the biochemical isolation, characterization, and functional reconstitution of Na+− channel proteins from the electroplax of electric fish (Miller et al., 1983; Norman et al., 1983; Rosenberg et al., 1984a, b), mammalian skeletal muscle (Barchi, 1983; Weigele and Barchi, 1982; Tanaka et al., 1983), and mammalian brain (Hartshorne and Catterall, 1984; Talvenheimo et al., 1982; Tamkun et al., 1984) have recently been made (for review, see Agnew, 1984). In addition, the cDNA for the principal peptide component of the electroplax channel has been cloned and sequenced, providing the first extensive information about the primary structure and allowing deductions of the possible secondary and tertiary structure of the protein (Noda et al., 1984). These biochemical, biophysical, and molecular biological approaches, including specific protein chemical modifications, site-specific mutagenesis, electron microscopic structural analysis, and functional reconstitution will provide important insights into the structures and mechanisms of the channel. This chapter concentrates on reconstitution studies with the purified electroplax Na+ channel.

Keywords

Sodium Channel Diffusion Potential Functional Reconstitution Flux Assay Vesicle Interior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnew, W. S., 1984, Voltage-regulated sodium channel molecules, Annu. Rev. Physiol. 46:517–530.PubMedCrossRefGoogle Scholar
  2. Agnew, W. S., and Raftery, M. A., 1979, Solubilized tetrodotoxin binding component from the electroplax of Electrophorus electricus. Stability as a function of mixed lipid-detergent micelle composition, Biochemistry 10:1912–1919.CrossRefGoogle Scholar
  3. Agnew, W. S., Levinson, S. R., Brabson, J. S., and Raftery, M. A., 1978, Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes, Proc. Natl. Acad. Sci. U.S.A. 75:2606–2610.PubMedCrossRefGoogle Scholar
  4. Agnew, W. S., Miller, J. A., Ellisman, M. H., Rosenberg, R. L., Tomiko, S. A., and Levinson, S. R., 1983, The voltage-regulated sodium channel from the electroplax of Electrophorus electricus, Cold Spring Harbor Symp. Quant. Biol. 48:165–179.CrossRefGoogle Scholar
  5. Aldrich, R. W., Corey, D. P., and Stevens, C. F., 1983, A reinterpretation of mammalian sodium channel gating based on single channel recording, Nature 306:436–441.PubMedCrossRefGoogle Scholar
  6. Barchi, R. L., 1983, Protein components of the purified sodium channel from rat skeletal muscle sarcolemma, J. Neurochem. 40:1377–1385.PubMedCrossRefGoogle Scholar
  7. Bartels, E., and Rosenberry, T. L., 1973, Modification of electroplax excitability by veratridine, Biochim. Biophys. Acta 298:973–985.PubMedCrossRefGoogle Scholar
  8. Cahalan, M. D., 1980, Molecular properties of sodium channels in excitable membranes, in: The Cell Surface and Neuronal Function (C. W. Cotman, G. Poste, and G. L. Nicolson, eds.), pp. 1–47, Elsevier/North-Holland Biomedical Press, New York.Google Scholar
  9. Cahalan, M. D., and Begenisich, T., 1976, Sodium channel selectivity. Dependence on internal permeant ion concentrations, J. Gen. Physiol. 68:111–125.PubMedCrossRefGoogle Scholar
  10. Catterall, W. A., 1980, Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes, Annu. Rev. Pharmacol. Toxicol. 20:15–43.PubMedCrossRefGoogle Scholar
  11. Chandler, W. K., and Meves, H., 1965, Voltage-clamp experiments on internally perfused giant axons, J. Physiol. (Lond.) 180:788-820.Google Scholar
  12. Corey, D. P., and Stevens, C. F., 1983, Science and technology of patch recording electrodes, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.) pp. 53–68, Plenum Press, New York.CrossRefGoogle Scholar
  13. Ebert, G. A., and Goldman, L., 1976, The permeability of the sodium channel in Myxicola to the alkali cations, J. Gen. Physiol. 68:327–340.PubMedCrossRefGoogle Scholar
  14. Fox, J. M., 1974, Selective blocking of the nodal sodium channels by ultraviolet radiation. I. Phenomenology of the radiation effect, Pfluegers Arch. 351:287–301.CrossRefGoogle Scholar
  15. Garcia, A. M., and Miller, C., 1984, Channel mediated monovalent cation fluxes in isolated sarcoplasmic reticulum vesicles, J. Gen. Physiol. 83:819–839.PubMedCrossRefGoogle Scholar
  16. Garty, H., Rudy, B., and Karlish, S. J. D., 1983, A simple and sensitive procedure for measuring isotope fluxes through ion-specific channels in heterogeneous populations of membrane vesicles, J. Biol. Chem. 258:13094–13099.PubMedGoogle Scholar
  17. Gasko, O. D., Knowles, A. F., Shertzer, H. G., Suolinna, E.-M., and Racker, E., 1976, The use of ion-exchange resins for studying ion transport in biological systems, Anal. Biochem. 72:57–65.PubMedCrossRefGoogle Scholar
  18. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pfleugers Arch. 391:85–100.CrossRefGoogle Scholar
  19. Hartshorne, R. P., and Catterall, W. A., 1984, The sodium channel from rat brain. Purification and subunit composition, J. Biol. Chem. 259:1667–1675.PubMedGoogle Scholar
  20. Hartshorne, R. P., Keller, B. U., Talvenheimo, J. A., Catterall, W. A., and Montai, M., 1985, Functional reconstitution of the purified brain sodium channel in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 82:240–244.PubMedCrossRefGoogle Scholar
  21. Hille, B., 1972, The permeability of the sodium channel to metal cations in myelinated nerve, J. Gen. Physiol. 59:637–658.PubMedCrossRefGoogle Scholar
  22. Hjelmeland, L. H., 1980, A non-denaturing zwitterionic detergent for membrane biochemistry: Design and synthesis, Proc. Natl. Acad. Sci. U.S.A. 77:6368–6370.PubMedCrossRefGoogle Scholar
  23. Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (Lond.) 117:500–544.Google Scholar
  24. Holloway, P. W., 1973, A simple procedure for removal of Triton X-100 from protein samples, Anal. Biochem. 53:304–308.PubMedCrossRefGoogle Scholar
  25. Horn, R., Patlak, J., and Stevens, C. F., 1981, The effect of tetramethylammonium on single sodium channel currents, Biophys J. 36:321–327.PubMedCrossRefGoogle Scholar
  26. Horn, R., Vandenberg, C. A., and Lange, K., 1984, Statistical analysis of single sodium channels. Effects of N-bromoacetamide, Biophys. J. 45:323–335.PubMedCrossRefGoogle Scholar
  27. Huang, L. M., Catterall, W. A., and Ehrenstein, G., 1979, Comparison of ionic selectivity of batrachotoxin-activated channels with different tetrodotoxin dissociation constants, J. Gen. Physiol. 73:839–854.PubMedCrossRefGoogle Scholar
  28. Huang, L. M., Moran, N., and Ehrenstein, G., 1982, Batrachotoxin modifies the gating kinetics of sodium channels in internally perfused neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A. 79:2082–2085.PubMedCrossRefGoogle Scholar
  29. Huang, L. M., Moran, N., and Ehrenstein, G., 1984, Gating kinetics of batrachotoxin-modified sodium channels in neuroblastoma cells determined from single-channel measurements, Biophys. J. 45:313–322.PubMedCrossRefGoogle Scholar
  30. Karlin, A., 1967, Permeability and internal concentration of ions during depolarization of the electroplax, Proc. Natl. Acad. Sci. U.S.A. 58:1162–1167.PubMedCrossRefGoogle Scholar
  31. Karlin, A., 1980, Molecular properties of nicotinic acetylcholine receptors, in: The Cell Surface and Neuronal Function (C. W. Cotman, G. Poste, and G. L. Nicholson, eds.), pp. 191–260, Elsevier/North-Holland, Biomedical Press.Google Scholar
  32. Kasahara, M., and Hinkle, P. C., 1977, Reconstitution and purification of the D-glucose transporter from human erythrocytes, J. Biol. Chem. 252:7384–7390.PubMedGoogle Scholar
  33. Keynes, R. D., and Martins-Ferriera, H., 1953, Membrane potentials in the electroplates of the electric eel, J. Physiol. (Lond.) 119:315–351.Google Scholar
  34. Khodorov, B. I., 1978, Chemicals as tools to study nerve fiber sodium channels. Effects of batrachotoxin and some local anesthetics, in: Membrane Transport Processes, Vol. 2 (D. C. Tosteson, Y. A. Ovchinnikov, and R. Latorre, eds.), pp. 153–174, Raven Press, New York.Google Scholar
  35. Krueger, B. K., Worley, J. F., and French, R. J., 1983, Single sodium channels from rat brain incorporated into planar lipid bilayers, Nature 303:172–175.PubMedCrossRefGoogle Scholar
  36. Landowne, D., 1975, A comparison of radioactive thallium and potassium fluxes in the giant axon of the squid, J. Physiol. (Lond.) 252:79-96.Google Scholar
  37. Levinson, S. R., 1975, Studies on excitable membrane proteins, Ph.D. Thesis, University of Cambridge, Cambridge.Google Scholar
  38. Levinson, S. R., Curatalo, C. J., Reed, J., and Raftery, M. A., 1979, A rapid and precise assay for tetrodotoxin binding to detergent extracts of excitable tissues, Anal. Biochem. 99:72–84.PubMedCrossRefGoogle Scholar
  39. Miller, J. A., Agnew, W. S., and Levinson, S. R., 1983, Principal glycopeptide of the tetrodotoxin/ saxitoxin binding protein from Electrophorus electric us: Isolation and partial chemical and physical characterization, Biochemistry 22:462–470.PubMedCrossRefGoogle Scholar
  40. Moczydlowski, E., Garber, S. S., and Miller, C., 1984, Batrachotoxin-activated Na+ channels in planar lipid bilayers: Competition of tetrodotoxin block by Na+, J. Gen. Physiol. 84:665–686.PubMedCrossRefGoogle Scholar
  41. Moore, H.-P. H., and Raftery, M. A., 1980, Direct spectroscopic studies of cation translocation by Torpedo acetylcholine receptor on a time scale of physiological relevance, Proc. Natl. Acad. Sci. U.S.A. 77:4509–4513.PubMedCrossRefGoogle Scholar
  42. Moore, A. C., Agnew, W. S., and Raftery, M. A., 1982, Biochemical characterization of the tetrodotoxin binding protein from Electrophorus electricus, Biochemistry 24:6212–6220.CrossRefGoogle Scholar
  43. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature 312:121–127.PubMedCrossRefGoogle Scholar
  44. Norman, R. I., Schmid, A., Lombet, A., Barhanin, J., and Lazdunski, M., 1983, Purification of binding protein for Tityus 7-toxin identified with the gating component of the voltage-sensitive Na+ channel, Proc. Natl. Acad. Sci. U.S.A. 80:4164–4168.PubMedCrossRefGoogle Scholar
  45. Pick, U., 1981, Liposomes with a large trapping capacity prepared by freezing and thawing sonicated phospholipid mixtures, Arch. Biochem. Biophys. 212:186–194.PubMedCrossRefGoogle Scholar
  46. Rosenberg, R. L., 1985, Functional reconstitution of the voltage-regulated sodium channel purified from the electroplax of Electrophorus electricus, Ph.D. dissertation, Yale University, New Haven.Google Scholar
  47. Rosenberg, R. L., Tomiko, S. A., and Agnew, W. S., 1984a, Reconstitution of neurotoxin-modulated ion transport by the voltage-regulated sodium channel isolated from the electroplax of Electrophorus electricus, Proc. Natl. Acad. Sci. U.S.A. 81:1239–1243.CrossRefGoogle Scholar
  48. Rosenberg, R. L., Tomiko, S. A., and Agnew, W. S., 1984b, Single-channel properties of the reconstituted voltage-regulated Na channel isolated from the electroplax of Electrophorus electricus, Proc. Natl. Acad. Sci. U.S.A. 81:5594–5598.CrossRefGoogle Scholar
  49. Sakmann, B., and Neher, E., 1983, Geometric parameters of pipettes and membrane patches, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 37–51, Plenum Press, New York.CrossRefGoogle Scholar
  50. Sigworth, F. J., 1983, Electronic design of the patch clamp, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 3–35, Plenum Press, New York.CrossRefGoogle Scholar
  51. Sigworth, F. J., and Neher, E., 1980, Single Na+ channel currents observed in cultured rat muscle cells, Nature 287:447–449.PubMedCrossRefGoogle Scholar
  52. Talvenheimo, J. A., Tamkun, M. M., and Catterall, W. S., 1982, Reconstitution of neurotoxin-stimulated sodium transport by the voltage-sensitive sodium channel purified from rat brain, J. Biol. Chem. 257:11868–11871.PubMedGoogle Scholar
  53. Tamkun, M. M., Talvenheimo, J. A., and Catterall, W. A., 1984, The sodium channel from rat brain. Reconstitution of neurotoxin-activated ion flux and scorpion toxin binding from purified components, J. Biol. Chem. 259:1676–1688.PubMedGoogle Scholar
  54. Tanaka, J. C., Eccleston, J. F., and Barchi, R. L., 1983, Cation selectivity characteristics of the reconstituted voltage-dependent sodium channel purified from rat skeletal muscle sarcolemma, J. Biol. Chem. 258:7519–7526.PubMedGoogle Scholar
  55. Tank, D. W., and Miller, C., 1983, Patch-clamped liposomes: Recording reconstituted ion channels, in: Single-Channel Recording (B. Sakmann and E. Neher, eds.), pp. 91–105, Plenum Press, New York.CrossRefGoogle Scholar
  56. Tomiko, S. A., Rosenberg, R. L., and Agnew, W. S., 1984, A fluorescence assay for cation flux into liposomes containing sodium channels purified from Electrophorus electricus, Soc. Neurosci. Abstr. 10:864.Google Scholar
  57. Tomiko, S. A., Rosenberg, R. L., Emerick, M. C., and Agnew, W. S., 1986, A fluorescence assay for neurotoxin-modulated ion transport by the reconstituted voltage-activated Na channel isolated from eel electric organ, Biochemistry (in press).Google Scholar
  58. Udenfriend, S., 1962, Fluorescence Assay in Biology and Medicine, pp. 498–501, Academic Press, New York.Google Scholar
  59. Villegas, R., Villegas, G. M., Barnola, F. V., and Racker, E., 1977, Incorporation of the sodium channel of lobster nerve into artificial liposomes, Biochem. Biophys. Res. Commun. 79:210–217.PubMedCrossRefGoogle Scholar
  60. Weigele, J. B., and Barchi, R. L., 1982, Functional reconstitution of the purified sodium channel protein from rat sarcolemma, Proc. Natl. Acad. Sci. U.S.A. 79:3651–3655.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • W. S. Agnew
    • 1
  • R. L. Rosenberg
    • 1
  • S. A. Tomiko
    • 1
  1. 1.Department of PhysiologyYale University School of MedicineNew HavenUSA

Personalised recommendations