Skeletal Muscle Sodium Channels

Isolation and Reconstitution
  • J. C. Tanaka
  • R. E. Furman
  • R. L. Barchi

Abstract

In mammalian muscle, a voltage-sensitive sodium channel controls the transient increase in membrane conductance that produces an action potential in the sarcolemma and T-tubular membranes. The time- and voltage-dependent characteristics of the currents regulated by this channel have been studied extensively over the past few decades, first using the traditional approach of voltage clamp (Adrian et al., 1970) and more recently at the single-channel level using patch-clamp technology (Sigworth and Neher, 1980).

Keywords

Permeability Surfactant Alkaloid HEPES Neuroblastoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian, R. H., Chandler, W. K., and Hodgkin, A. L., 1970, Voltage clamp experiments in striated muscle fibers, J. Physiol. (Lond.) 208:607-644.Google Scholar
  2. Agnew, W. S., and Raftery, M. A., 1979, Solubilized tetrodotoxin binding component from the electroplax of Electrophorus electric us. Stability as a function of mixed lipid-detergent micelle composition, Biochemistry 18:1912–1919.PubMedCrossRefGoogle Scholar
  3. Agnew, W. S., Levinson, S. R., Brabson, J. S., and Raftery, M. A., 1978, Purification of the tetrodotoxin-binding component associated with the voltage-sensitive sodium channel from Electrophorus electricus electroplax membranes, Proc. Natl. Acad. Sci. U.S.A. 75:2606–2610.PubMedCrossRefGoogle Scholar
  4. Andreoli, T. E., Tieffenberg, M., and Tosteson, D. C., 1967, The effect of valinomycin on the ionic permeability of thin lipid membranes, J. Gen. Physiol. 50:2527–2545.PubMedCrossRefGoogle Scholar
  5. Barchi, R. L., 1983, Protein components of the purified sodium channel from rat skeletal muscle sarcolemma, J. Neurochem. 40:1377–1385.PubMedCrossRefGoogle Scholar
  6. Barchi, R. L., 1984, Voltage-sensitive Na+ ion channels: Molecular properties and functional reconstitution, Trends. Biochem. Sci. 9:358–361.CrossRefGoogle Scholar
  7. Barchi, R. L., and Murphy, L. E., 1980, Size characteristics of the solubilized sodium channel saxitoxin binding site from mammalian sarcolemma, Biochim. Biophys. Acta 597:391–398.PubMedCrossRefGoogle Scholar
  8. Barchi, R. L., and Tanaka, J. C., 1984, Cation gating and selectivity in a purified, reconstituted, voltage-dependent sodium channel, Biophys. J. 45:35–37.PubMedCrossRefGoogle Scholar
  9. Barchi, R. L., Weigele, J., Chalikian, D., and Murphy, L., 1979, Muscle surface membranes. Preparative methods affect apparent chemical properties and neurotoxin binding, Biochim. Biophys. Acta 550:59–76.PubMedCrossRefGoogle Scholar
  10. Barchi, R. L., Cohen, S. A., and Murphy, L. E., 1980, Purification from rat sarcolemma of the saxitoxin-binding component of the excitable membrane sodium channel, Proc. Natl. Acad. Sci. U.S.A. 77:1306–1310.PubMedCrossRefGoogle Scholar
  11. Barchi, R. L., Tanaka, J. C., and Furman, R. F., 1984, Molecular characteristics and functional reconstitution of muscle voltage-sensitive sodium channels, J. Cell. Biochem 26:135–146.PubMedCrossRefGoogle Scholar
  12. Barhanin, J., Pauron, D., Lombet, A., Norman, R. I., Vijverberg, P. M., Giglio, J. R., and Lazdunski, M., 1983, Electrophysiological characterization, solubilization and purification of the Tityus toxin receptor associated with the gating component of the Na+ channel from rat brain, EMBO J. 2:915–920.PubMedGoogle Scholar
  13. Barhanin, J., Schmidt, A., Lombet, A., Wheeler, K. P., Lazdunski, M., and Ellory, J. C., 1984a, Molecular size of different neurotoxin receptors on the voltage-sensitive Na+ channel, J. Biol. Chem. 258:700–702.Google Scholar
  14. Barhanin, J., Ildefonse, M., Rougier, O., Sampaio, S. V., Giglio, J. R., and Lazdunski, M., 1984b, Tityus γ toxin, a high affinity effector of the Na+ channel in muscle, with a selectivity for channels in the surface membrane, Pflugers Arch. 400:22–27.PubMedCrossRefGoogle Scholar
  15. Beneski, D. A., and Catterall, W. A., 1980, Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc. Natl. Acad. Sci. U.S.A. 77:639–643.PubMedCrossRefGoogle Scholar
  16. Casadei, J. M., Gordon, R. D., Lampson, L. A., Shotland, D. L., and Barchi, R. L., 1984, Monoclonal antibodies against the voltage-sensitive Na+ channel from mammalian skeletal muscle, Proc. Natl. Acad. Sci. U.S.A. 81:6227–6231.PubMedCrossRefGoogle Scholar
  17. Casadei, J. M., Gordon, R. D., and Barchi, R. L., 1985, Immunoaffinity purification of the voltage dependent sodium channel from mammalian skeletal muscle, J. Biol. Chem. (in press).Google Scholar
  18. Catterall, W. A., 1975, Activation of the action potential Na+ ionophore of cultured neuroblastoma cells by veratridine and batrachotoxin, J. Biol. Chem. 250:4053–4059.PubMedGoogle Scholar
  19. Catterall, W. A., 1977, Activation of the action potential Na+ ionophore by neurotoxins, J. Biol. Chem. 252:8669–8676.PubMedGoogle Scholar
  20. Catterall, W. A., 1980, Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes, Annu. Rev. Pharmacol. Toxicol. 20:15–43.PubMedCrossRefGoogle Scholar
  21. Fersht, A., and Jakes, R., 1975, Demonstration of two reaction pathways for the aminoacylation of tRNA. Application of the pulsed quenched flow technique, Biochemistry 14:3350–3356.PubMedCrossRefGoogle Scholar
  22. Frelin, C., Vigne, P., and Lazdunski, M., 1981, The specificity of the sodium channel for monovalent cations, Eur. J. Biochem. 119:437–442.PubMedCrossRefGoogle Scholar
  23. Frelin, D., Vigne, P., and Lazdunski, M., 1983, Na+ channels with high and low affinity tetrodotoxin binding sites in mammalian skeletal muscle cells, J. Biol. Chem. 258:7256–7259.PubMedGoogle Scholar
  24. Gutfreund, H., 1969, Rapid mixing: Continuous flow, Methods Enzymol. 16:229–249.CrossRefGoogle Scholar
  25. Hamill, O. P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F. J., 1981, Improved patch-clamp techniques for high-resolution current recording from cells and cell free membrane patches. Pflugers. Arch. 391:85-100. Harris, J. B., and Thesleff, S., 1971, Studies on tetrodotoxin resistant action potentials in denervated skeletal muscle, Acta Physiol. Scand. 83:382–388.Google Scholar
  26. Hartshorne, R. P., and Catterall, W. A., 1981, Purification of the saxitoxin receptor of the sodium channel from rat brain, Proc. Natl. Acad. Sci. U.S.A. 78:4620–4624.PubMedCrossRefGoogle Scholar
  27. Hartshorne, R. P., Messner, D. J., Coppersmith, J. C., and Catterall, W. A., 1982, The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical β subunits, J. Biol. Chem. 257:13888–13891.PubMedGoogle Scholar
  28. Hartshorne, R., Keeler, B. U., Talvenheimo, J. A., Catterall, W. A., and Montai, M., 1985, Functional reconstitution of the purified brain sodium channel in planar lipid bilayers, Proc. Natl. Acad. Sci. U.S.A. 82:240–244.PubMedCrossRefGoogle Scholar
  29. Hille, B., 1972, The permeability of the sodium channel to metal catins in myelinated nerve, J. Gen. Physiol. 59:637–658.PubMedCrossRefGoogle Scholar
  30. Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer, Sunderland, MA.Google Scholar
  31. Hjelemeland, L. M., Nebert, D. W., and Osborne, J. C., Jr., 1983, Sulfobetaine derivatives of bile acids: Nondenaturing surfactants for membrane biochemistry, Anal. Biochem. 130:72–82.CrossRefGoogle Scholar
  32. Holloway, F. W., 1973, A simple procedure for removal of Triton X-100 from protein samples, Anal. Biochem 53:301–308.CrossRefGoogle Scholar
  33. Horn, R., Patlak, J., and Stevens, C. F., 1981, Sodium channels need not open before they inactivate, Nature 291:426–427.PubMedCrossRefGoogle Scholar
  34. Huang, L. M., Catterall, W. A., and Ehrenstein, G., 1979, Comparison of ionic selectivity of batrachotoxin-activated channels with different tetrodotoxin dissociation constants, J. Gen. Physiol. 73:839–854.PubMedCrossRefGoogle Scholar
  35. Huang, L. M., Moran, N., and Ehrenstein, G., 1982, Batrachotoxin modifies the gating kinetics of sodium channels in internally perfused neuroblastoma cells, Proc. Natl. Acad. Sci. U.S.A. 79:2082–2085.PubMedCrossRefGoogle Scholar
  36. Jaimovich, E., Chicheportiche, R., Lombet, A., Lazdunski, M., Ildefonse, M., and Rougier, O., 1983, Differences in the properties of Na+ channels in muscle surface and t-tubular membranes revealed by tetrodotoxin derivatives, Pflugers. Arch. 397:1–5.PubMedCrossRefGoogle Scholar
  37. Khodorov, B. I., 1978, Chemicals as tools to study nerve fiber sodium channels; effects of batrachotoxin and some local anesthetics, in: Membrane Transport Processes, Vol. 2 (D. C. Tosteson, A. Y. Ovchennikov, and R. Latorre, eds.), pp. 153–174. Raven Press, New York.Google Scholar
  38. Kraner, S. D., Tanaka, J. C., Matesic, D. R., and Barchi, R. L., 1985, Purification and functional reconstitution of the voltage-sensitive sodium channel from rabbit T-tubular membranes, J. Biol. Chem. 260:6341–6347.PubMedGoogle Scholar
  39. Krueger, B. K., Worley, J. F., and French, R. J., 1983, Single sodium channels from rat brain incorporated into planar lipid bilayer membranes, Nature 303:172–175.PubMedCrossRefGoogle Scholar
  40. Leibowitz, M. D., Sutro, J. B., and Hille, B., 1985, Four lipid-soluble toxins modify sodium channel gating, Biophys. J. 47:32a.Google Scholar
  41. Miller, C., and Racker, E., 1979, Reconstitution of membrane transport functions, in: The Receptors, Vol. 1 (R. D. O’Brien, ed.), p. 16, Plenum Press, New York.Google Scholar
  42. Miller, J. A., Agnew, W. S., and Levinson, S. R., 1983, Principal glycopeptide of the tetrodotoxin saxitoxin binding protein from Electrophorus electricus: Isolation and partial chemical and physical characterization, Biochemistry 22:462–470.PubMedCrossRefGoogle Scholar
  43. Mueller, P., and Rudin, D. O., 1967, Development of K+-Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics, Biochem. Biophys. Res. Commun. 26:398–404.PubMedCrossRefGoogle Scholar
  44. Narahashi, T., 1974, Chemicals as tools in the study of excitable membranes, Physiol. Rev. 54:814–889.Google Scholar
  45. Noda, M., Shimizu, S., Tsutomu, T, Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, U., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M. A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., and Numa, S., 1984, Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence, Nature 312:121–127.PubMedCrossRefGoogle Scholar
  46. Norman, R. I., Schmidt, A., Lombet, A., Barhanin, J., and Lazdunski, M., 1983, Purification of binding protein from Tityus toxin identified with the gating component of the voltage-sensitive Na+ channel, Proc. Natl. Acad. Sci. U.S.A. 80:4164–4168.PubMedCrossRefGoogle Scholar
  47. Oku, N., Kendall, D. A., and Macdonald, R. C., 1982, Measurement of trapped space by calcein quenching and comparison with gramicidin measured spaces, Biochim. Biophys. Acta 691:332–340.CrossRefGoogle Scholar
  48. Pappone, P., 1980, Voltage-clamp experiments in normal and denervated mammalian skeletal muscle fibers, J. Physiol.(Lond.) 306:377-410.Google Scholar
  49. Quandt, F. N., and Narahashi, T., 1982, Modification of single Na+ channels by batrachotoxin, Proc. Natl. Acad. Sci. U.S.A. 79:6732–6736.PubMedCrossRefGoogle Scholar
  50. Redfern, P., and Thesleff, S., 1971, Action potential generations in denervated rat skeletal muscle, Acta Physiol. Stand. 81:557–564.CrossRefGoogle Scholar
  51. Rhoden, V., and Goldin, S. M., 1979, Formation of unilamellarlipid vesicles of controllable dimensions by detergent dialysis, Biochemistry 18:4172–4176.CrossRefGoogle Scholar
  52. Rosemblatt, M., Hidalgo, C., Vergara, C., and Ikemoto, N., 1981, Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle, J. Biol. Chem. 256:8140–8148.PubMedGoogle Scholar
  53. Rosenberg, R. L., Tomiko, S. A., and Agnew, W. S., 1984, Reconstitution of neurotoxin-modulated ion transport by the voltage-regulated sodium channel isolated from the electroplax of Electrophorus electricus, Proc. Natl. Acad. Sci. U.S.A. 81:1239-1243. Schauf, C. L., 1973, Temperature dependence of the ionic current kinetics of Myxicola giant axons, J. Physiol. (Lond.) 235:197–205.Google Scholar
  54. Sharkey, R. S., Beneski, D. A., and Catterall, W. A., 1983, Specific labeling of the a and β, subunits of the sodium channel by photoreactive derivatives of scorpion toxin, Biochemistry 23:6078–6086.CrossRefGoogle Scholar
  55. Sherman, S. J., Lawrence, J. C., Messner, D. J., Jacoby, K., and Catterall, W. A., 1983, Tetrodotoxinsensitive sodium channels in rat muscle cells developing in vitro, J. Biol. Chem. 258:2488–2495.Google Scholar
  56. Sigworth, F. J., and Neher, E., 1980, Single Na+ channel currents observed in cultured rat muscle cells, Nature 287:447–449.PubMedCrossRefGoogle Scholar
  57. Tanaka, J. C., Eccleston, J. F., and Barchi, R. L., 1983, Cation selectivity characteristics of the reconstituted voltage-dependent sodium channel purified from rat skeletal muscle sarcolemma, J. Biol. Chem. 258:7519–7526.PubMedGoogle Scholar
  58. Tank, D. W., Miller, C., and Webb, W. W., 1982, Isolated-patch recording from liposomes containing functionally reconstituted chloride channels from Torpedo electroplax, Proc. Natl. Acad. Sci. U.S.A. 79:7749–7753.CrossRefGoogle Scholar
  59. Ulbricht, W., 1969, The effect of veratridine on excitable membranes of nerve and muscle, Ergeb. Physiol. Biol. Chem. Exp. Pharmacol. 61:18–71.CrossRefGoogle Scholar
  60. Weigele, J. B., and Barchi, R. L., 1982, Functional reconstitution of the purified sodium channel protein from rat sarcolemma, Proc. Natl. Acad. Sci. U.S.A. 79:3651–3655.PubMedCrossRefGoogle Scholar
  61. Yoshi, M., Scruggs, V., and Narahashi, T., 1984, Effect of veratridine on single sodium channel currents, Soc. Neurosci. Abstr. 9:674.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • J. C. Tanaka
    • 1
  • R. E. Furman
    • 1
  • R. L. Barchi
    • 1
  1. 1.David Mahoney Institute of Neurological Sciences and Department of NeurologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations