Advertisement

Scanned Photovoltage and Photoemission

  • T. H. DiStefano
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 46)

Abstract

Focused beams of light or electrons [1] are useful in probing semiconductor materials and devices in order to obtain information on crystalline defects, surface irregularities, minority carrier lifetime, and resistivity variations as well as gross device defects. Generally, in this type of measurement, the beam is scanned across the surface to generate hole-electron pairs in the material. For the standard configuration, a junction near the surface is used to collect a current which is displayed as a function of position, producing an image of the defects or inhomogeneities in the material. The structure of the image is due to fluctuations of the current produced by material inhomogeneities in the vicinity of the scanned beam. Of the two modes of scanning, the electron beam offers a higher resolution; on the other hand, the optical beam is a simpler measurement which can be used for probing semiconductor material under various insulating materials found in actual devices. Together, the techniques provide complimentary information on the microscopic structure and the electronic propoerties of defects and inhomogeneities in semiconductor materials.

Keywords

Diffusion Length Schottky Barrier Minority Carrier Light Spot Semiconductor Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A review of the electron beam techniques is given by C. J. Varker (in this volume).Google Scholar
  2. 2.
    Photoelectron Spectroscopy for the Examination of Surfaces and Interfaces is reviewed by W. E. Spicer (in this volume).Google Scholar
  3. 3.
    R. Williams in Semiconductors and Semimetals, 6, 97 ( R. K. Willardson, Ed. ), Academic (1970).Google Scholar
  4. 4.
    R. Williams and R. H. Bube, J. Appl. Phys. 31, 968 (1960).CrossRefGoogle Scholar
  5. 5.
    R. Williams, Phys. Rev. 140, A569 (1965).CrossRefGoogle Scholar
  6. 6.
    C. N. Berglund and W. E. Spicer, Phys. Rev. 136, A1030 (1964).CrossRefGoogle Scholar
  7. 7.
    Evan. O. Kane, Phsy. Rev. 127, 131 (1962).CrossRefGoogle Scholar
  8. 8.
    R. J. Powell and C. N. Berglund, J. Appl. Phys. 42, 4390 (1971).CrossRefGoogle Scholar
  9. 9.
    Alvin M. Goodman, Phys. Rev. 144, 588 (1966).CrossRefGoogle Scholar
  10. 10.
    C. A. Mead, Appl. Phys. Lett. 9, 53 (1966).Google Scholar
  11. 11.
    A. Rose, Concepts in Photoconductivity and Allied Problems, 121, Interscience (1963).Google Scholar
  12. 12.
    T. H. Ning and H. N. Yu, J. Appl. Phys. 45, 5373 (1974).CrossRefGoogle Scholar
  13. 13.
    T. H. Ning, C. M. Osburn, and H. N. Yu, Appl. Phys. Lett. 26, 248 (1975).CrossRefGoogle Scholar
  14. 14.
    B. E. Deal, E. H. Snow, and C. A. Mead, J. Phys. Chem. Solids 27, 1873 (1966).CrossRefGoogle Scholar
  15. 15.
    A. M. Goodman, “Internal Photoemission is a Tool for the Study of Insulators,” in Optical Properties of Dielectric Films ( ECS Symposium, Boston ) (1968).Google Scholar
  16. 16.
    C. G. Wang and T. H. DiStefano, Crit. Rev. Solid State Scie. 5, 327 (1975).CrossRefGoogle Scholar
  17. 17.
    J. Andrews, J. Vac. Sci. Technol. 11, 972 (1974).CrossRefGoogle Scholar
  18. 18.
    W. E. Spicer, RCA Rev. 19, 555 (1958).Google Scholar
  19. 19.
    J. J. Scheer, Phillips Res. Reports 15, 584 (1960).Google Scholar
  20. 20.
    W. E. Spicer, J. Appl. Phys. 31, 2077 (1960).CrossRefGoogle Scholar
  21. 21.
    A. M. Goodman, Phys.Rev. 152, 785 (1965).CrossRefGoogle Scholar
  22. 22.
    G. W. Gobeli and F. G. Allen, Phys. Rev. 127, 19 (1962).CrossRefGoogle Scholar
  23. 23.
    E. H. Snow, A. S. Grove, B. E. Deal, and C. T. Sah, J. Appl. Phys. 36, 1664 (1965).CrossRefGoogle Scholar
  24. 24.
    T. H. DiStefano and J. E. Lewis, J. Vac. Sci. Technol. 11, 1020 (1974).CrossRefGoogle Scholar
  25. 25.
    R. Williams, J. Vac. Sci. Technol. 11, 1025 (1974).CrossRefGoogle Scholar
  26. 26.
    C. R. Viswanathan and S. Ogura, Appl. Phys. Lett. 12, 220 (1968).CrossRefGoogle Scholar
  27. 27.
    R. Williams, J. Appl Phys. 37, 1491 (1966).CrossRefGoogle Scholar
  28. 28.
    C. R. Viswanathan and S. Oguran, Proc. IEEE 59, 1552 (1969).CrossRefGoogle Scholar
  29. 29.
    B. E. Deal, A. S. Grove, E. H. Snow, and C. T. Sah, J. Electrochem. Soc. 112, 308 (1965).CrossRefGoogle Scholar
  30. 30.
    N. J. Chou, Y. J. van der Neulen, R. Hammer, and J. Cahill, Appl Phys. Lett. 24, 200, (1974).CrossRefGoogle Scholar
  31. 31.
    T. H. DiStefano and J. M. Viggiano, IBM J. Res. Dev. 18, 94 (1974).Google Scholar
  32. 32.
    J. S. Johannessen, W. E. Spicer, J. F. Gibbons, J. D. Plummer, N. J. Taylor, J. Appl. Phys. 49, 4453 (1978).CrossRefGoogle Scholar
  33. 33.
    M. Avron, M. Shatzkes, P. J. Burkhardt, adn I. Cadoff, Appl. Phys. 47, 3159 (1976).Google Scholar
  34. 34.
    J. R. Haberer, “Photoresponse Mapping of Semiconductors,” in Physics of Failure in Electronics, (T. S. Shilliday and J. Vaccaro, Eds.), 5, 51, Rome Air Developement Center-USAF, Rome, NY (1967).Google Scholar
  35. 35.
    R. A. Summers, Solid State Technol. 10, 12 (March 1967).Google Scholar
  36. 36.
    G. Adam, Physica 20, 1037 (1954).CrossRefGoogle Scholar
  37. 37.
    J. Tihanyi and G. Pazstor, Solid State Electron 20, 235 (1967).CrossRefGoogle Scholar
  38. 38.
    J. Oroshink and A. Many, J.Electrochem. Soc. 106, 360 (1959).CrossRefGoogle Scholar
  39. 39.
    V. Stoyanov and R. Steranov, Phys. Stat. Sol. A7, K133 (1971).CrossRefGoogle Scholar
  40. 40.
    T. H. DiStefano, Appl. Phys. Lett. 19, 280 (1971).Google Scholar
  41. 41.
    D. L. Lile and N. M. Davis, Solid State Electron. 18, 699 (1975).CrossRefGoogle Scholar
  42. 42.
    C. N. Potter and D. E. Sawyer, “Optical Scanning Techniques for Semiconductor Device Screening and Identification of Surface and Junction Phenomena,” in Physics of Failure in Electronics, (T. S. Shilliday and J. Vaccaro, Eds.) 5, 37, Rome Aire Devel. Center-USAF (1967); C. N. Potter and D. E. Sawyer, Rev. Sci. Instrum. 39, 180 (1968).Google Scholar
  43. 43.
    R. J. Phelan, Jr., and N. L. DeMeo, Jr., Appl. Optics 10, 858 (1971).CrossRefGoogle Scholar
  44. 44.
    L. A. Kasprzak, Rev. Sci. Instrum. 46, 257 (1975).CrossRefGoogle Scholar
  45. 45.
    H. W. Werlich and R. v. Pole, IEEE J. Quantum Elect. 13, D79 (1977).CrossRefGoogle Scholar
  46. 46.
    R. Williams and M. H. Woods, J. Appl. Phys. 43, 4142 (1972).CrossRefGoogle Scholar
  47. 47.
    D. L. Blackburn, H. A. Schafft, and L. J. Scwarzendruber, J. Rlectrochem. Soc. 119, 1776 (1972).Google Scholar
  48. 48.
    D. E. Sawyer, D. W. Berning and D. C. Lewis, Sol. St. Technol. 37 (1977).Google Scholar
  49. 49.
    M. E. Levy, “An Investigation of Flaws in CMOS Devices by a Scanning Photoexcitation Technique,” (Proc. 15th Annual Reliability Physics Conf., Las Vegas, Nevada 1977 ), 44.Google Scholar
  50. 50.
    J. W. Philbrick and T. H. DiStefano, “Scanning Surface Photo-voltage Study of Defects in Silicon,” (Proc. 13th Annual Reliability Phys. Conf. Las Vegas, 1975 ). 159.Google Scholar
  51. 51.
    V. E. Kozhevin, Soy. Phys. Solid State 8, 1979 (1967).Google Scholar
  52. 52.
    T. H. DiStefano, “Photoemission and Photovoltaic Imaging of Semiconductor Surfaces,” (NBS Pub. 400–23, NBS, 1976 ) 197.Google Scholar
  53. 53.
    C.J._ Owen and W. R. Merwarth, Res./Dev. 66 (March 1970).Google Scholar
  54. 54.
    T. H. DiStefano, J. Appl. Phys. 44, 527 (1973).CrossRefGoogle Scholar
  55. 55.
    R. Castagne and A. Vapaille, Electron. Lett. 6, 691 (1970).CrossRefGoogle Scholar
  56. 56.
    G. H. Schwuttke, Tech. Rep. No. 1, ARPA Contract No. DAHC 15–72-C-0274 (1973).Google Scholar
  57. 57.
    T. H. DiStefano, Semi-Annual Tech. Rep. No. 2, ARPA Contract F19628–73-C-0006 (1973).Google Scholar
  58. 58.
    L. W. James, G. A. Antypas, J. J. Vebbing, T. O. Yep, and R. L. Bell, J. Appl. Phys. 42, 580 (1971).CrossRefGoogle Scholar
  59. 59.
    C. Chr. Veerman, Matter Sci. Eng. 4, 329 (1969).Google Scholar
  60. 60.
    W. J. Baxter, J. Appl. Phys. 44, 608 (1973).CrossRefGoogle Scholar
  61. 61.
    A. Gieroszynski and B. Sujak, Acta Phys. Pol. 20, 337 (1975).Google Scholar
  62. 62.
    W. J. Baxter and S. R. Rouze, J. Appl. Phys. 44, 4400 (1973).CrossRefGoogle Scholar
  63. 63.
    W. J. Baxter and S. R. Rouze, Rev. Sci. Instrum. 44, 1628 (1973).CrossRefGoogle Scholar
  64. 64.
    W. J. Baxter and S. R. Rouze, J. Appl. Phys. 46, 2429 (1975).CrossRefGoogle Scholar
  65. 65.
    W. J. BaxteT, J. Appl. Phys. 45, 4692 (1974).CrossRefGoogle Scholar
  66. 66.
    Letokhov, in Laser Focus, (September 1975).Google Scholar
  67. 67.
    F. S. Coucher, Phys. Rev. 81, 475 (1951).Google Scholar
  68. 68.
    L. B. Valdes, Proc. IRE 40, 1420 (1952).CrossRefGoogle Scholar
  69. 69.
    D. G. Avery and J. B. Gunn, Proc. Phys. Soc. B68, 918 (1955).CrossRefGoogle Scholar
  70. 70.
    G. Schwab, Proc. 3rd Intl. Symp. on Silicon Materials Sci. and Technol., ( Electrochem Soc. 1977 ), 481.Google Scholar
  71. 71.
    J. D. Kamm, in Proc. 3rd Intl. Symp. on Silicon Materials Sci. and Technol. ( Electrochem. Soc., 1977 ), 491.Google Scholar
  72. 72.
    Chemning, Hu, IEEE Trans. Electron Devices ED-15, 822 (1978).Google Scholar
  73. 73.
    M. Watanabe, G. Actor, and H. C. Gatos, IEEE Trans. Electron Devices ED-24, 1172 (1977).Google Scholar
  74. 74.
    R. W. Bicknell, J. Vac. Sci. Technol. 14, 1012 (1977).CrossRefGoogle Scholar
  75. 75.
    T. S. Moss, J. Electron, Cont. 1, 126 (1955).CrossRefGoogle Scholar
  76. 76.
    A. Quilliet and P. Gosar, J. Phys. Rad. 21, 575 (1960).CrossRefGoogle Scholar
  77. 77.
    A. M. Goodman, J. Appl. Phys. 32, 2550 (1961).CrossRefGoogle Scholar
  78. 78.
    F. Bergman, C. Fritzche, and H7-D. Riccius, Telefunkun Zig. 37, 186 (1964).Google Scholar
  79. 79.
    D. R. Frankl and E. A. Ulmer, Surface Sci. 6, 115 (1966).CrossRefGoogle Scholar
  80. 80.
    D. L. Lile, Surface Sci. 34, 337 (1973).CrossRefGoogle Scholar
  81. 81.
    W. H. Brattain and J. Bardeen, BSTJ 32, 1 (1953): C. G. B. Garrett and W. H. Brattain, Phys. Rev. 99, 376 (1955); W. H. Brattain and C. G. B. Garrett, BSTJ 35, 1019 (1956): C. G. B. Garrett and W. H. Brattain, BSTJ 35, 1041 (1956).Google Scholar
  82. 82.
    E. 0. Johnson, Phys. Rev. 111, 153 (1958).CrossRefGoogle Scholar
  83. 83.
    H. C. Gatos and J. Lagowski, J. Vac. Sci. Technol. 10, 130 (1973), and references cited therein.Google Scholar
  84. 84.
    J. J. Loferski and J. J. Wysocki, Bull. Am. Phys. Soc. 115, 265 (1960).Google Scholar
  85. 85.
    W. E. Phillips, Solid St. Elect. 15, 1097 (1972).Google Scholar
  86. 86.
    H. Reichl and H. Bernt, Solid St. Electron 18, 453 (1975).CrossRefGoogle Scholar
  87. 87.
    R. S. Nakhmanson, Solid St. Electron 18, 617 (1975); R. S. Nakhmanson, Z. S. Ovsyuk, and L. K. Popov, Solid St. Electron 18, 627 (1975).Google Scholar
  88. 88.
    T. H. DiStefano, IEEE Trans. Electron. 22, 1055 (1975).Google Scholar
  89. 89.
    W. R. Bottoms and D. Guterman, J. Vac. Sci. Technol. 11, 965 (1975); W. R. Bottoms, D. Guterman, and P. Roitman, J. Vac. Sci. Technol. 12, 134 (1975).CrossRefGoogle Scholar
  90. 90.
    J.Tauc, Czeck. J. Phys. 5, 178 (1955).Google Scholar
  91. 91.
    I. A. Baev and E. G. Valyashko, Soviet Phys.-Solid State 6, 1357 (1964); 7, 2090 (1966).Google Scholar
  92. 92.
    J. Tauc, Photo and Thermoelectric Effects in Semiconductors, (Int’l. Series of Monographs on Semiconductors, Ed. by H. K Henisch, Pergamon, 1962 ), 98.Google Scholar
  93. 93.
    H. F. Matare, Solid State Technol. 20, 56 (1977).Google Scholar
  94. 94.
    D. J. Dumin and W. N. Henry, Metallurgical Trans. 2, 677 (1971).CrossRefGoogle Scholar
  95. 95.
    K. V. Ravi, Phil. Mag. 30, 1081 (1974); el, 405 (1975).Google Scholar
  96. 96.
    S. M. Hu, J. Appl. Phys 45, 1567 (1974)CrossRefGoogle Scholar
  97. 97.
    S. M. Hu, J. Appl. Phys. 46, 1465 (1975).CrossRefGoogle Scholar
  98. 98.
    S. M. Hu, J. Appl. Phys. 46, 1470 (1975).CrossRefGoogle Scholar
  99. 99.
    A previously published photovoltage image of thiese stacking faults (Ref. 50) includes an incorrect dimensional marker.Google Scholar
  100. 100.
    M. Zerpst, Z. Agnew. Phys. 22, 30 (1966).Google Scholar
  101. 101.
    D. K. Schroder adn J. Guldberg, Solid State Electron. 14, 1285 (1971).CrossRefGoogle Scholar
  102. 102.
    K. V. Ravi and C. J. Varker, J. Appl. Phys. 45, 263 (1974).CrossRefGoogle Scholar
  103. 103.
    C. J. Varker and K. V. Ravi, J. Appl. Phys. 45, 272 (1974).CrossRefGoogle Scholar
  104. 104.
    G. H. Schwuttke, “Damage Profiles in Silicon and Their Impact on Device Reliability,” Tech. Rep. 1, Jan. 1973, and Tech. Rep. 2, July 1973, ARPA Constract DAH C 15–72-C-0274.Google Scholar
  105. 105.
    J. L. Deines, D. B. Dove, J. W. Philbrick, and M. R. Poponiak, to be published (1979).Google Scholar
  106. 106.
    D. R. Turner, J. Electrochem. Soc. 105, 402 (1958).CrossRefGoogle Scholar
  107. 107.
    V. Stoyanov and R. Strfanov, Phys. Stat. Sol. A7, K133 (1971).CrossRefGoogle Scholar
  108. 108.
    T. H. DiStefano and J. J. Cuomo, Appl. Phys. Lett. 30, 351 (1977).CrossRefGoogle Scholar
  109. 109.
    T. Warabisako, T. Saitoh, H. Otoh, N. Nakamura, and T. Tokuyama, Jap. J. Appl. Phys. 17, 309 (1978).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • T. H. DiStefano
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations