Advertisement

Semiconductor Material Evaluation by Means of Schottky Contacts

  • Klaus Heime
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 46)

Abstract

The large variety of possible application of semiconductor devices — from high current, high voltage to microwave devices, from integrated optoelectronics — is to a large extent due to the fact that semiconductors can be doped to a desired type and magnitude of conductivity. This is done by incorporating impurities whose energy levels in the forbidden gap are close to valence or conduction band and which are therefore completely ionized at normal temperatures of device operation. These levels are called shallow levels. The first part of this paper will discuss the principal methods for the evaluation of the concentration and local distribution of these shallow levels by means of Schottky contacts.

Keywords

Microwave Recombination GaAs Auger Librium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Many, Y. Goldstein, N. B. Grover, Semiconductor Surfaces, Amsterdam, London, New York (1971).Google Scholar
  2. 2.
    W. Schottky, W. Deutschmann, Phys. Z. 30, 839 (1929).Google Scholar
  3. W. Schottky, Z. Phys. 118, 539 (1972).CrossRefGoogle Scholar
  4. 3.
    K. Heime, Solid-State Electronics 13, 1505 (1970) (with further references to the problem).Google Scholar
  5. 4.
    W. Schockly, Electrons and Holes in Semiconductors, New York (1950).Google Scholar
  6. 5.
    W. C. Johnson, P. T. Panousis, IEEE Trans. ED-18, 965 (1971).Google Scholar
  7. 6.
    A. M. Goodman, J. Appl. Phys. 34, 329 (1963).CrossRefGoogle Scholar
  8. 7.
    J. A. Copeland, IEEE Trans. ED-17, 404 (1970).Google Scholar
  9. 8.
    K. Heime, Z. Angew, Physik 32, 374 (1972).Google Scholar
  10. 9.
    C. R. Crowell, S. M. Sze, Solid-State Electronics 9, 1035 (1966).CrossRefGoogle Scholar
  11. 10.
    K. H. Bachem, J. Engemann, K. Heime, Proc. 5th Int. Conf. Solid-State Devices, Tokyo, 1973; Suppl. Jap. J. Appl. Phys. 43, 222 (1974).Google Scholar
  12. 11.
    J. Baston, K. Heime, private communicationGoogle Scholar
  13. 12.
    J. Engemann, Dissertation, RWTH Aachen (1975).Google Scholar
  14. 13.
    L. M. F. Kaufmann, K. Heime, J. Crystal Growth 42, 321 (1977).CrossRefGoogle Scholar
  15. 14.
    W. Shockley, W. T. Read, Jr., Phys. Rev. 87, 835 (1972).CrossRefGoogle Scholar
  16. 15.
    M. Lax, Phys. Rev. 119, 1502 (1960).CrossRefGoogle Scholar
  17. 16.
    T.P. Landsberg, A. R. Beattie, J. Phys. Chem. Solids 8, 73 (1959).CrossRefGoogle Scholar
  18. 17.
    C. H. Henry, D. V. Lang, Proc. 12th Int. Conf. Phys. Semiconductors, Stuttgart, 411 (1974).Google Scholar
  19. 18.
    T. Ikoma, M. Takikawa, T. Okumura, Proc. 8th Int. Conf. Solid-State Devices, Tokyo, 1976, Suppl. Jap. J. Appl. Phys. 16, 223 (1977).Google Scholar
  20. 19.
    Ch. Kittel, Thermal Physics, New York (1969).Google Scholar
  21. 20.
    R. R. Senechal, J. Basinski, J. Appl. Phys. 39, 458 (1968).Google Scholar
  22. 21.
    C. T. Huang, S. S. Li, Solid-State Electr. 16, 1481 (1973).CrossRefGoogle Scholar
  23. 22.
    C. T. Sah. L. Forbes, L. L. Rosier, A. F. Tasch, Jr., Solid-State Electr. 13, 759 (1970).CrossRefGoogle Scholar
  24. 23.
    M. G. Buehler, Solid-State Electr. 15, 69 (1972).CrossRefGoogle Scholar
  25. 24.
    G. Goto, S. Yanagisawa, O. Wada, H. Takanashi, Appl. Phys. Letters 23, 150 (1973).CrossRefGoogle Scholar
  26. 25.
    G. Goto, S. Yanagisawa, Jap. J. Appl. Phys. 13, 1127 (1974).CrossRefGoogle Scholar
  27. 26.
    J. Engemann, K. Heime, CRC Crit. Rev. Solid-State Sciences 5, 485 (1975) (II. Annual Conf. on the Phys. of Compound Semic. Surf., San Francisco, (1975)).Google Scholar
  28. 27.
    D. V. Lang, J. Appl. Phys. 45, 3023 (1974).CrossRefGoogle Scholar
  29. 28.
    H. Lefevre, M. Schulz, Applied Phys. 12, 45 (1977).CrossRefGoogle Scholar
  30. 29.
    G. Buehler, A. G. Milnes, Deep Impurities in Semiconductors, New York (1973).Google Scholar
  31. 30.
    A. M. White, P. J. Dean, P. Porteous, J. Appl. Phys. 47, 3230 (1975).CrossRefGoogle Scholar
  32. 31.
    A. B. Roitsin, Sov. Phys. Semicond. 8, 1, (1974).Google Scholar
  33. 32.
    S. M. Sze, Physics of Semiconductor Devices, New York, (1969)Google Scholar
  34. 33.
    M. Schulz, Inst. Phys. Conf. Series No. 22, 226 (1974).Google Scholar
  35. 34.
    A. Mitonneau, G. M. Martin, A. Mircea, Inst. Phys. Conf. Series 33a 73, (1977) (GaAs and related compounds, Edinburgh (1976)).Google Scholar
  36. 35.
    H. G. Grimmeiss, C. Ovren, J. W. Aller, J. Appl. Phys. 47, 1103, (1976).CrossRefGoogle Scholar
  37. 36.
    E. Fabre, R. N. Bhargava, W. K Zwicker, J. Electron. Mater. 3, 409 (1974).CrossRefGoogle Scholar
  38. 37.
    B. L. Smith, T. J. Hayes, A. R. Peaker, D. R. Wight, Appl. Phys. Lett. 26, 122 (1975).CrossRefGoogle Scholar
  39. 38.
    H. Kukimoto, M. Mizuta, Proc. 5th Conf. Solid-State Dev., J. Jap. Soc. Appl. Phys. 43, 95 (1974), Suppl.Google Scholar
  40. 39.
    B. Hamilton, A. R. Peaker, S. Bramwell, W. Harding, D. R. Wight, Appl.-Phys. Lett. 26, 702 (1975).CrossRefGoogle Scholar
  41. 40.
    C. H. Henry, P. D. Dapkus, J. Appl. Phys. 47, 4067 (1976).CrossRefGoogle Scholar
  42. 41.
    B. W. Wessels, J. Appl. Phys. 47, 1131 (1976).CrossRefGoogle Scholar
  43. 42.
    H. G. Grimmeis, Ann. Rev. Mater. Sci 7, 341–76 (1977). ( A review paper: Deep Level Impurities in Semiconductors).Google Scholar
  44. 43.
    F. Lau, H. Poth, P. Balk, to be published (Isothermal and non-isothermal C-V trap measurements - A critical comparison).Google Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • Klaus Heime
    • 1
  1. 1.Chair of Solid State ElectronicsUniversity of DuisburgDuisburgFederal Republic of Germany

Personalised recommendations