Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 46))

Abstract

The large variety of possible application of semiconductor devices — from high current, high voltage to microwave devices, from integrated optoelectronics — is to a large extent due to the fact that semiconductors can be doped to a desired type and magnitude of conductivity. This is done by incorporating impurities whose energy levels in the forbidden gap are close to valence or conduction band and which are therefore completely ionized at normal temperatures of device operation. These levels are called shallow levels. The first part of this paper will discuss the principal methods for the evaluation of the concentration and local distribution of these shallow levels by means of Schottky contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Many, Y. Goldstein, N. B. Grover, Semiconductor Surfaces, Amsterdam, London, New York (1971).

    Google Scholar 

  2. W. Schottky, W. Deutschmann, Phys. Z. 30, 839 (1929).

    Google Scholar 

  3. W. Schottky, Z. Phys. 118, 539 (1972).

    Article  Google Scholar 

  4. K. Heime, Solid-State Electronics 13, 1505 (1970) (with further references to the problem).

    Google Scholar 

  5. W. Schockly, Electrons and Holes in Semiconductors, New York (1950).

    Google Scholar 

  6. W. C. Johnson, P. T. Panousis, IEEE Trans. ED-18, 965 (1971).

    Google Scholar 

  7. A. M. Goodman, J. Appl. Phys. 34, 329 (1963).

    Article  Google Scholar 

  8. J. A. Copeland, IEEE Trans. ED-17, 404 (1970).

    Google Scholar 

  9. K. Heime, Z. Angew, Physik 32, 374 (1972).

    Google Scholar 

  10. C. R. Crowell, S. M. Sze, Solid-State Electronics 9, 1035 (1966).

    Article  Google Scholar 

  11. K. H. Bachem, J. Engemann, K. Heime, Proc. 5th Int. Conf. Solid-State Devices, Tokyo, 1973; Suppl. Jap. J. Appl. Phys. 43, 222 (1974).

    Google Scholar 

  12. J. Baston, K. Heime, private communication

    Google Scholar 

  13. J. Engemann, Dissertation, RWTH Aachen (1975).

    Google Scholar 

  14. L. M. F. Kaufmann, K. Heime, J. Crystal Growth 42, 321 (1977).

    Article  Google Scholar 

  15. W. Shockley, W. T. Read, Jr., Phys. Rev. 87, 835 (1972).

    Article  Google Scholar 

  16. M. Lax, Phys. Rev. 119, 1502 (1960).

    Article  Google Scholar 

  17. T.P. Landsberg, A. R. Beattie, J. Phys. Chem. Solids 8, 73 (1959).

    Article  Google Scholar 

  18. C. H. Henry, D. V. Lang, Proc. 12th Int. Conf. Phys. Semiconductors, Stuttgart, 411 (1974).

    Google Scholar 

  19. T. Ikoma, M. Takikawa, T. Okumura, Proc. 8th Int. Conf. Solid-State Devices, Tokyo, 1976, Suppl. Jap. J. Appl. Phys. 16, 223 (1977).

    Google Scholar 

  20. Ch. Kittel, Thermal Physics, New York (1969).

    Google Scholar 

  21. R. R. Senechal, J. Basinski, J. Appl. Phys. 39, 458 (1968).

    Google Scholar 

  22. C. T. Huang, S. S. Li, Solid-State Electr. 16, 1481 (1973).

    Article  Google Scholar 

  23. C. T. Sah. L. Forbes, L. L. Rosier, A. F. Tasch, Jr., Solid-State Electr. 13, 759 (1970).

    Article  Google Scholar 

  24. M. G. Buehler, Solid-State Electr. 15, 69 (1972).

    Article  Google Scholar 

  25. G. Goto, S. Yanagisawa, O. Wada, H. Takanashi, Appl. Phys. Letters 23, 150 (1973).

    Article  Google Scholar 

  26. G. Goto, S. Yanagisawa, Jap. J. Appl. Phys. 13, 1127 (1974).

    Article  Google Scholar 

  27. J. Engemann, K. Heime, CRC Crit. Rev. Solid-State Sciences 5, 485 (1975) (II. Annual Conf. on the Phys. of Compound Semic. Surf., San Francisco, (1975)).

    Google Scholar 

  28. D. V. Lang, J. Appl. Phys. 45, 3023 (1974).

    Article  Google Scholar 

  29. H. Lefevre, M. Schulz, Applied Phys. 12, 45 (1977).

    Article  Google Scholar 

  30. G. Buehler, A. G. Milnes, Deep Impurities in Semiconductors, New York (1973).

    Google Scholar 

  31. A. M. White, P. J. Dean, P. Porteous, J. Appl. Phys. 47, 3230 (1975).

    Article  Google Scholar 

  32. A. B. Roitsin, Sov. Phys. Semicond. 8, 1, (1974).

    Google Scholar 

  33. S. M. Sze, Physics of Semiconductor Devices, New York, (1969)

    Google Scholar 

  34. M. Schulz, Inst. Phys. Conf. Series No. 22, 226 (1974).

    Google Scholar 

  35. A. Mitonneau, G. M. Martin, A. Mircea, Inst. Phys. Conf. Series 33a 73, (1977) (GaAs and related compounds, Edinburgh (1976)).

    Google Scholar 

  36. H. G. Grimmeiss, C. Ovren, J. W. Aller, J. Appl. Phys. 47, 1103, (1976).

    Article  Google Scholar 

  37. E. Fabre, R. N. Bhargava, W. K Zwicker, J. Electron. Mater. 3, 409 (1974).

    Article  Google Scholar 

  38. B. L. Smith, T. J. Hayes, A. R. Peaker, D. R. Wight, Appl. Phys. Lett. 26, 122 (1975).

    Article  Google Scholar 

  39. H. Kukimoto, M. Mizuta, Proc. 5th Conf. Solid-State Dev., J. Jap. Soc. Appl. Phys. 43, 95 (1974), Suppl.

    Google Scholar 

  40. B. Hamilton, A. R. Peaker, S. Bramwell, W. Harding, D. R. Wight, Appl.-Phys. Lett. 26, 702 (1975).

    Article  Google Scholar 

  41. C. H. Henry, P. D. Dapkus, J. Appl. Phys. 47, 4067 (1976).

    Article  Google Scholar 

  42. B. W. Wessels, J. Appl. Phys. 47, 1131 (1976).

    Article  Google Scholar 

  43. H. G. Grimmeis, Ann. Rev. Mater. Sci 7, 341–76 (1977). ( A review paper: Deep Level Impurities in Semiconductors).

    Google Scholar 

  44. F. Lau, H. Poth, P. Balk, to be published (Isothermal and non-isothermal C-V trap measurements - A critical comparison).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heime, K. (1979). Semiconductor Material Evaluation by Means of Schottky Contacts. In: Zemel, J.N. (eds) Nondestructive Evaluation of Semiconductor Materials and Devices. NATO Advanced Study Institutes Series, vol 46. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1352-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1352-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1354-1

  • Online ISBN: 978-1-4757-1352-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics