Advertisement

Physiology of the Photosynthetic Prokaryotes

  • John G. Ormerod
Part of the Biotechnology Handbooks book series (BTHA, volume 6)

Abstract

Living organisms grow by synthesizing in an ordered fashion the complex macromolecules of their own cells from simpler molecules. In general, the energy requirements for this can be met either by degrading part of the nutritional substrate for respiration (heterotrophic organisms) or by converting light energy into chemical energy as in the phototrophic organisms. The proportions of these two types of organisms on the earth are difficult to estimate, but their activities balance each other. In the long term both types are dependent on each other for major nutrients—heterotrophs must have the oxygen and organic molecules produced by photosynthesis; the phototrophs depend on the heterotrophs for keeping the oxygen content of the atmosphere at a tolerable level and for carbon dioxide, produced by respiration. The phototrophs also depend on sunlight, which is the driving force for the whole system. The two modes of life, heterotrophy and photototrophy, must have existed side by side on the surface of the earth for thousands of millions of years.

Keywords

Reaction Center Photosynthetic Bacterium Phototrophic Bacterium Photosynthetic Reaction Centre Polyaspartic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizawa, K., and Miyachi, S., 1986, Carbonic anhydrase and CO2 concentrating mechanisms in microalgae and cyanobacteria, FEMS Microbiol. Rev. 39: 215–233.CrossRefGoogle Scholar
  2. Allen, J. P., Feher, G., Yeates, T. O., Komiya, H., and Rees, D. C., 1987, Structure of the reaction center from Rhodobacter sphaeroides R-26: The protein subunits, Proc. Natl. Acad. Sci. USA 84: 6162–6166.PubMedCrossRefGoogle Scholar
  3. Allen, M. M., 1984, Cyanobacterial cell inclusions, Annu. Rev. Microbiol. 38: 1–25.CrossRefGoogle Scholar
  4. Amesz, J., 1990, Antenna systems of green bacteria and heliobacteria, in: Current Research in Photosynthesis, Volume II ( M. Baltscheffsky, ed.), Kluwer, Dordrecht, pp. 25–31.Google Scholar
  5. Andreasson, L. E., and Vännghrd, T., 1988, Nytt Ijus over fotosyntesen, Kem. Tidskr. 1988 (12): 41–46.Google Scholar
  6. Avissar, Y. J., Ormerod, J. G., and Beale, S. I., 1989, Distribution of 8-aminolevulinic acid biosynthetic pathways among phototrophic bacterial groups, Arch. Microbiol. 151: 513–519.PubMedCrossRefGoogle Scholar
  7. Blankenship, R. E., 1985, Electron transport in green photosynthetic bacteria, Photosynth. Res. 6: 317–333.CrossRefGoogle Scholar
  8. Brandt, H., Knee, E. J., Fuller, R. C., Gross, R. A., and Lenz, R. W., 1989, Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (13-hydroxy-alkanoates): Potential sources for biodegardable polyesters, Int. J. Biol. Macromol. 11: 49–55.CrossRefGoogle Scholar
  9. Buchanan, B. B., and Evans, M. C. W., 1969, Photoreduction of ferredoxin and its use in NAD(P)+ reduction by a subcellular preparation from the photosynthetic bacterium Chlorobium thiosulfatophilum, Biochim. Biophys. Acta 180: 123–129.PubMedCrossRefGoogle Scholar
  10. Burger-Wiersma, T., Veenhuis, M., Korthals, H. J., Van De Wiel, C. C. M., and Mur, L. R., 1986, A new prokaryote containing chlorophylls a and b, Nature 320: 262–264.CrossRefGoogle Scholar
  11. Carr, N. G., 1988, Nitrogen reserves and dynamic reservoirs in cyanobacteria, in: Biochemistry of the Algae and Cyanobacteria (L. J. Rogers and J. R. Gallon, eds.), Oxford University Press, Oxford, pp. 13–21.Google Scholar
  12. Ciferri, O., 1983, Spirulina, the edible microorganism, Microbiol. Rev. 47: 551–578.PubMedGoogle Scholar
  13. Cohen-Bazire, G., Sistrom, W. R., and Stanier, R. Y., 1957, Kinetic studies of pigment synthesis by non-sulfur purple bacteria, J. Cell. Comp. Physiol. 49: 25–68.CrossRefGoogle Scholar
  14. Cork, D. J., Garunas, R., and Sajjad, A., 1983, Chlorobium limicola forma thiosulfatophilum: Biocatalyst in the production of sulfur and organic carbon from a gas stream containing H2S and CO2, J. Bacterial. 45: 913–918.Google Scholar
  15. Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H., 1985, Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 A resolution, Nature 318: 618–624.PubMedCrossRefGoogle Scholar
  16. De Wit, R., and Van Gemerden, H., 1990, Growth of the phototrophic purple sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimes in the light, FEMS Microbiol. Ecol. 73: 69–76.CrossRefGoogle Scholar
  17. Dutton, P. L., and Evans, W. C., 1978, Metabolism of aromatic compounds by Rhodospirillaceae, in: The Photosynthetic Bacteria ( R. K. Clayton and W. R. Sistrom, eds.), Plenum Press, New York, pp. 719–726.Google Scholar
  18. Eimhjellen, K. E., Aasmundrud, O., and Jensen, A., 1963, A new bacteriochlorophyll, Biochem. Biophys. Res. Commun. 10: 232–236.CrossRefGoogle Scholar
  19. Eimhjellen, K. E., Steensland, H., and Trätteberg, J., 1967, A Thiococcus sp. nov. gen., its pigments and internal membrane system, Arch. Mikrobiol. 59: 82–92.PubMedCrossRefGoogle Scholar
  20. Evans, M. C. W., Buchanan, B. B., and Arnon, D. I., 1966, A new ferredoxin dependent reduction cycle in a photosynthetic bacterium, Proc. Natl. Acad. Sci. USA 55: 928–934.PubMedCrossRefGoogle Scholar
  21. Fuller, R. C., Sprague, S. G., Gest, H., and Blankenship, R. E., 1985, Unique photosynthetic reaction center from Heliobacterium chlorum, FEBS Lett. 182: 345–349.CrossRefGoogle Scholar
  22. Gantt, E., 1986, Phycobilisomes, in: Photosynthesis III ( L. A. Staehelin and C. J. Arntzen, eds.), Springer, Berlin, pp. 260–268.Google Scholar
  23. Gest, H., and Favinger, J. L., 1983, Heliobacterium chlorum, an anoxygenic brownish-green photosynthetic bacterium containing a “new” form of bacteriochlorophyll, Arch. Microbiol. 136: 11–16.Google Scholar
  24. Gest, H., Ormerod, J. G., and Ormerod, K. S., 1962, Photometabolism of Rhodospirillum rubrum: Light-dependent dissimilation of organic compounds to carbon dioxide and molecular hydrogen by an anaerobic citric acid cycle, Arch. Biochem. Biophys. 97: 21–33.PubMedCrossRefGoogle Scholar
  25. Gottschalk, G., 1986, Bacterial Metabolism, 2nd ed., Springer, New York.CrossRefGoogle Scholar
  26. Hansen, T. A., 1983, Electron donor metabolism in phototrophic bacteria, in: The Phototrophic Bacteria ( J. G. Ormerod, ed.), Blackwell, Oxford, pp. 76–99.Google Scholar
  27. Harder, W., Kuenen, J. G., and Matin, A., 1977, A review, microbial selection in continuous culture, J. Appl. Bacterial. 43: 1–24.CrossRefGoogle Scholar
  28. Heda, G. D., and Madigan, M. T., 1988, Nitrogen metabolism and N2 fixation in phototrophic green bacteria, in: Green Photosynthetic Bacteria ( J. M. Olson, J. G. Ormerod, J. Amesz, E. Stackebrandt, and H. G. Trüper, eds.), Plenum Press, New York, pp. 175–187.CrossRefGoogle Scholar
  29. Holo, H., 1989, Chloroflexus auranctiacus secretes 3-hydroxypropionate, a possible intermediate in the assimilation of CO2 and acetate, Arch. Microbiol. 151: 252–256.CrossRefGoogle Scholar
  30. Holo, H., and Sirevâg, R., 1986, Autotrophic growth and CO2 fixation of Chloroflexus auranctiacus, Arch. Microbiol. 145: 173–180.CrossRefGoogle Scholar
  31. Hurt, E. C., and Hauska, G., 1984, Purification of membrane-bound cytochromes and a photoactive P840 protein complex of the green sulfur bacterium Chlorobium f. thiosulfatophilum, FEBS Lett. 168: 149–154.CrossRefGoogle Scholar
  32. Kallas, T., Rippka, R., Coursin, T., Rebiere, M. C., Tandeau de Marsac, N., and Cohen-Bazire, G., 1983, Aerobic nitrogen fixation by non-heterocystous cyanobacteria, in: Photosynthetic Prokaryotes ( C. G. Papageorgiou and L. Packer, eds.), Elsevier, Amsterdam, pp. 281–302.Google Scholar
  33. Knaff, D. B., 1978, Reducing potentials and the pathway of NAD+ reduction, in: The Photosynthetic Bacteria ( R. K. Clayton and W. R. Sistrom, Eds.), Plenum Press, New York, pp. 629–640.Google Scholar
  34. Lewin, R. A., 1976, Prochlorophyta as a proposed new division of algae, Nature 261: 697–698.PubMedCrossRefGoogle Scholar
  35. Löken, O., and Sirevâg, R., 1979, Evidence for the presence of the glyoxylate cycle in Chloroflexus, Arch. Microbiol. 132: 276–279.CrossRefGoogle Scholar
  36. Madigan, M. T., and Brock, T. D., 1977, CO2 fixation in photosynthetically grown Chloroflexus aurantiacus, FEMS Microbiol. Lett. 1: 301–304.CrossRefGoogle Scholar
  37. Madigan, M. T., and Gest, H., 1978, Growth of a photosynthetic bacterium in darkness, supported by oxidant-dependent sugar fermentation, Arch. Microbiol. 117: 119–122.PubMedCrossRefGoogle Scholar
  38. Mullineaux, P. M., Gallon, J. R., and Chaplin, A. E., 1981, Acetylene reduction in cyanobac- teria grown under alternating light-dark cycles, FEMS Microbiol. Lett. 10: 245–247.CrossRefGoogle Scholar
  39. Neuer, G., Papen, H., and Bothe, H., 1983, Heterocyst biochemistry and differentiation, in: Photosynthetic Prokaryotes ( G. C. Papageorgiou and L. Packer, eds.), Elsevier, Amsterdam, pp. 219–242.Google Scholar
  40. Oelze, J.,. 1988, Regulation of tetrapyrrol synthesis by light in chemostat cultures of Rhodobacter sphaeroides, J. Bacteriol. 170: 4652–4657.PubMedGoogle Scholar
  41. Oelze, J., and Fuller, R. C., 1987, Growth and control of development of the photosynthetic apparatus in Chloroflexus auranctiacus, Arch. Microbiol. 148: 132–136.CrossRefGoogle Scholar
  42. Ormerod, J. G., 1983, The carbon cycle in aquatic ecosystems, in: Microbes in Their Natural Environments ( J. H. Slater, R. Whittenbury, and J. M. Wimpenny, eds.), Cambridge University Press, Cambridge, pp. 463–482.Google Scholar
  43. Ormerod, J. G., 1988, Natural genetic transformation in Chlorobium, in: Green Photosynthetic Bacteria ( J. M. Olsen, J. G. Ormerod, J. Amesz, E. Stackebrandt, and H. G. Trüper, eds.), Plenum Press, New York, pp. 315–319.CrossRefGoogle Scholar
  44. Ormerod, J. G., and Sirevâg, R., 1983, Essential aspects of carbon metabolism, in: The Phototrophic Bacteria ( J. G. Ormerod, ed.), Blackwell, Oxford, pp. 100–119.Google Scholar
  45. Ormerod, J. G., Ormerod, K. S., and Gest, H., 1961, Light dependent utilisation of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria: Relationships with nitrogen metabolism, Arch. Biochem. Biophys. 94: 449–463.PubMedCrossRefGoogle Scholar
  46. Ormerod, J. G., Nesbakken, T., and Torgersen, Y., 1990, Phototrophic bacteria that form heat resistant endospores, in: Current Research in Photosynthesis, Volume IV ( M. Baltscheffsky, ed.), Kluwer, Dordrecht, pp. 935–938.Google Scholar
  47. Ovchinnikov, Y. A., Abdulev, A. S., Zolotarev, A. S., Shmukler, B. E., Zargarov, A. A., Kutuzov, M. A., Telezhinskaya, I. N., and Levina, N. B., 1988a, Photosynthetic reaction centre of Chloroflexus auranctiacus I. Primary structure of L-subunit, FEBS Lett. 231: 237–242.PubMedCrossRefGoogle Scholar
  48. Ovchinnikov, Y. A., Abdulev, A. S., Schmuckler, B. E., Zargarov, A. A., Kutuzov, M. A., Telezhinskaya, I. N., Levina, N. B., and Zolotarev, A. S., 1988b, Photosynthetic reaction centre of Chloroflexus auranctiacus. Primary structure of M-subunit, FEBS Lett. 232: 364–368.PubMedCrossRefGoogle Scholar
  49. Packham, N. K., and Barber, J., 1987, Structural and functional comparison of anoxygenic and oxygenic organisms, in: The Light Reactions ( J. Barber, ed.), Elsevier, Amsterdam, pp. 1–30.Google Scholar
  50. Padan, E., and Cohen, Y., 1982, Anoxygenic photosynthesis, in: The Biology of Cyanobacteria ( N. G. Carr and B. A. Whitton, eds.), Blackwell, Oxford, pp. 215–235.Google Scholar
  51. Pelroy, R. A., Rippka, R., and Stanier, R. Y., 1972, The metabolism of glucose by unicellular blue-green algae, Arch. Mikrobiol. 87: 303–322.PubMedCrossRefGoogle Scholar
  52. Pfennig, N., 1961, Eine vollsyntetische Nährlösung zur…, Naturwissenschaften 48: 136CrossRefGoogle Scholar
  53. Pfennig, N., and Biebl, H., 1976, Desufuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur reducing, acetate-oxidising bacterium, Arch. Microbiol. 110: 3–12.Google Scholar
  54. Pfennig, N., and Lippert, D. T., 1966, Uber das vitamin B12-bedurfnis phototropher schwefelbakterien, Arch. Mikrobiol. 55: 245–246.CrossRefGoogle Scholar
  55. Pierson, B. K., and Castenholz, R. W., 1974, Studies of pigments and growth in Chloroflexus auranctiacus, a phototrophic filamentous bacterium, Arch. Microbiol. 100: 283–305.CrossRefGoogle Scholar
  56. Pierson, B. K., and Thornber, J. P., 1983, Isolation and spectral characteristics of photochemical reaction centers from the thermophilic green bacterium Chloroflexus auranctiacus strain J-10-f1, Proc. Natl. Acad. Sci. USA 80: 80–84.PubMedCrossRefGoogle Scholar
  57. Reed, D. W., and Clayton, R. K., 1968, Isolation of a reaction center fraction from Rhodopseudomonas sphaeroides, Biochem. Biophys. Res. Commun. 30: 471–475.PubMedCrossRefGoogle Scholar
  58. Rieble, S., Ormerod, J. G., and Beale, S. I., 1989, Transformation of glutamate to S-aminolevulinic acid by soluble extracts of Chlorobium vibrioforme, J. Bacteriol. 171: 3782–3787.PubMedGoogle Scholar
  59. Rippka, R., Waterbury, J. B., and Stanier, R. Y., 1981, Isolation and purification of cyanobacteria: Some principles, in: The Prokaryotes, Volume I ( M. P. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, eds.), Springer, Berlin, pp. 212–220.Google Scholar
  60. Scheller, H. V., and Moller, B. L., 1990, Photosystem I polypeptides, Physiol Plant. 78: 484494.Google Scholar
  61. Sirevsg, R., and Castenholz, R. C., 1979, Aspects of carbon metabolism in Chloroflexus, Arch. Microbiol. 120: 151–153.CrossRefGoogle Scholar
  62. Sirevâg, R., and Ormerod, J. G., 1970, Carbon dioxide fixation in green sulphur bacteria, Biochem. J. 120: 399–408.PubMedGoogle Scholar
  63. Sistrom, W. R., Griffiths, M., and Stanier, R. Y., 1956, The biology of a photosynthetic bacterium which lacks colored carotenoids, J. Cell. Comp. Physiol. 48: 473–515.CrossRefGoogle Scholar
  64. Staehelin, L. A., Golecki, R., Fuller, R. C., and Drews, G., 1978, Visualization of the supramolecular architecture of chlorosomes (Chlorobium type vesicles) in freeze-fractured cells of Chloroflexus auranctiacus, Arch. Microbiol. 119: 269–277.CrossRefGoogle Scholar
  65. Stanier, R. Y., Kunisawa, R., Mandel, M., and Cohen-Bazire, G., 1971, Purification and properties of unicellular blue green algae (order Chroococcales), Bacteriol. Revs. 35: 171–205.Google Scholar
  66. Takabe, T., and Akazawa, T., 1977, A comparative study on the effect of 02 on photosynthetic carbon metabolism by Chlorobium thiosulfatophilum and Chromatium vinosum, Plant Cell Physiol. 18: 753–765.Google Scholar
  67. Torgersen, Y. A., 1989, Characterization of an obligately phototrophic bacterium that contains bacteriochlorophyll g, Cand. Scient. thesis, Oslo University, Oslo, Norway [in Norwegian].Google Scholar
  68. Uffen, R. L., 1978, Fermentative metabolism and growth of photosynthetic bacteria, in: The Photosynthetic Bacteria ( R. K. Clayton and R. W. Sistrom, eds.), Plenum Press, New York, pp. 857–872.Google Scholar
  69. Van Gemerden, H., 1968, Utilization of reducing power in growing cultures of Chromatium, Arch. Mikrobiol. 64: 111–117.PubMedCrossRefGoogle Scholar
  70. Woese, C. R., 1987, Bacterial evolution, Microbiol. Rev. 51: 221–271.PubMedGoogle Scholar
  71. Wyman, M., Gregory, R. P. F., and Carr, N. G., 1985, Novel role for phycoerythrin in a marine cyanobacterium, Synechococcus strain DC2, Science 230: 818–820.PubMedCrossRefGoogle Scholar
  72. Yen, H.-C., and Marrs, B. L., 1976, Growth of Rhodopseudomonas capsulata under anaerobic dark conditions with dimethyl sulfoxide, Arch. Biochem. Biophys. 181: 411–418.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • John G. Ormerod
    • 1
  1. 1.Biology Department, Division of Molecular Cell BiologyUniversity of Oslo, BlindernOslo 3Norway

Personalised recommendations