Advertisement

Flapping Flight and Power in Birds and Insects, Conventional and Novel Mechanisms

  • Torkel Weis-Fogh

Abstract

In this general lecture I shall begin with simple observations and concepts and move towards the latest developments within the field.

Keywords

Lift Coefficient Dust Devil Return Stroke Wing Movement Forward Flight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, L. 1966 Insect aerodynamics: vertical sustaining force in near-hovering flight. Science, N. Y. 152, 1263-6.Google Scholar
  2. Bennett, L. 1970 Insect flight: lift and rate of change of incidence. Science, N. Y. 167, 177-9.Google Scholar
  3. Chance, M. A. C. 1974 Air flow and the flight of a Noctuid moth. Proc. Symposium Swimming & Flying in Nature, Pasadena, California, July 8 - 12.Google Scholar
  4. Ellington, C. P. 1974 Non-steady state aerodynamics of insect flight. Proc. Symposium Swimming & Flying in Nature, Pasadena, California, July 8 - 12.Google Scholar
  5. Hertel, H. 1966 Structure, Form, Movement. Reinholt, New York.Google Scholar
  6. Horridge, G. A. 1956 The flight of very small insects. Nature, London, 178, 1334-5.Google Scholar
  7. Jensen, M. 1956 Biology and physics of locust flight. III. The aerodynamics of locust flight. Phil. Trans. R. Soc., London, B, 239, 511-52.Google Scholar
  8. Kuethe, A. M. 1974 On the mechanics of flight of small insects. Proc. Symposium Swimming & Flying in Nature, Pasadena, California, July 8 - 12.Google Scholar
  9. Lighthill, M. J. 1973 On the Weis-Fogh mechanism of lift generation. J. F1. Mech. 60, 1-17.Google Scholar
  10. Lighthill, M. J. 1974 Aerodynamic aspects of animal flight. Proc. Symposium Swimming & Flying in Nature, Pasadena, California, July 8 - 12.Google Scholar
  11. Lilienthal, O. 1889 Der Vogelflug als Grundlage der Fliegekunst. R. Oldenbourg, Berlin.Google Scholar
  12. Marey, E. -J. 1890 Le vol des Oisoaux. G. Masson, Paris.Google Scholar
  13. Nachtigall, W. 1966 Die Kinematik der Schlagflugelbewegungen von Dipteren. Methodische und analytische Grundlagen zur Biophysik des Insektenflugs. Z. vergl. Physiol. 52, 155-211.Google Scholar
  14. Norberg, R. A. 1972a Evolution of flight of insects, Zoologica Scripta, 1, 247 - 50.CrossRefGoogle Scholar
  15. Norberg, R. A. 1972b Flight characteristics of two plume moths. Alucita pentadactyla L. and Orneodes hexadactyla L. ( Microlepidoptera ). Zoologiza Scripta, 1, 241-46.Google Scholar
  16. Norberg, R. A. 1974 Hovering flight of the dragonfly, Aeschna 'u~ ncea L. Proc. Symposium Swimming & Flying in Nature, Pasadena, California, July 8 - 12.Google Scholar
  17. Norberg, U. M. 1974 Hovering flight in the pied flycatcherGoogle Scholar
  18. (Ficedula hypoleuca). Proc. Symposium Swimming & Flying in Nature, Pasadena, California, July 8-12.Google Scholar
  19. Osborne, M. F. M. 1951 Aerodynamics of flapping flight with application to insects. J. exp. Biol. 28, 221-45.Google Scholar
  20. Pennycuick, C. J. 1968 Power requirements for horizontal flight in the pigeon Columba livia. J. exp. Biol. 49, 527 - 55.Google Scholar
  21. Pennycuick, C. J. 1969 The mechanism of bird migration. Ibis, 111, 525 - 56.CrossRefGoogle Scholar
  22. Pennycuick, C. J. 1972 Animal Flight, E. Arnold, London.Google Scholar
  23. Thom, A. and Swart, P. 1940 The forces on an aerofoil at very low speeds. J. R. aeronaut. Soc. 44, 761-70.Google Scholar
  24. Tucker, V. A. 1973 Bird metabolism during flight: evaluation of a theory. J. exp. Biol. 58, 689-709.Google Scholar
  25. Vergilius, P. V. M. 19 B. C. The Aeneid. Google Scholar
  26. Vogel, S. 1965 Studies on the flight performance and aerodynamics of Drosophila. Thesis, Harvard University.Google Scholar
  27. Vogel, S. 1967 Flight in Drosophila. III. Aerodynamic characteristics of fly wings and wing models. J. exp. Biol. 46, 431-43.Google Scholar
  28. Waloff, A. 1972 Observations on the airspeeds of freely flying locusts. Anim. Behay. 20, 367-72.Google Scholar
  29. Weis-Fogh, T. 1956 Biology and physics of locust flight. II. Flight performance of the desert locust (Schistocerca gregaria). Phil. Trans. R. Soc. Lond. B, 239, 459-510.Google Scholar
  30. Weis-Fogh, T. 1961 Power in flapping flight. In Ramsay, J. A. and Wigglesworth, V. B., eds., The Cell and the Organism, Cambridge University Press, 283 - 300.Google Scholar
  31. Weis-Fogh, T. 1964 Biology and physics of locust flight. VIII. Lift and metabolic rate of flying locusts. J. exp. Biol. 41, 257-71.Google Scholar
  32. Weis-Fogh, T. 1967 Energetics of hovering flight in hummingbirds and in Drosophila. J. exp. Biol. 56, 79 - 104.Google Scholar
  33. Weis-Fogh, T. 1973 Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. exp. Biol. 59, 169-230.Google Scholar
  34. Weis-Fogh, T. 1975 Scale, dimensions and design principles in actively flying animals. (Biol. Rev., in manuscript).Google Scholar
  35. Weis-Fogh, T. and Jensen, M. 1956 Biology and physics of locust flight. I. Basic principles in insect flight. A critical review. Phil. Trans. R. Soc. London, B, 239, 415-58.Google Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • Torkel Weis-Fogh
    • 1
  1. 1.University of CambridgeCambridgeEngland

Personalised recommendations