Effects of Macrobenthos on the Chemical Diagenesis of Freshwater Sediments

  • J. Berton Fisher
Part of the Topics in Geobiology book series (TGBI, volume 100)


In this chapter the effects of macrobenthos on chemical changes in sediments occurring during and after burial (i.e., chemical diagenesis) will be considered. The importance of sediments to the biogeochemical cycling of materials is well known (Mortimer, 1941, 1942, 1971; Lee, 1970). Freshwater sediments act as both a source and a sink for biologically important materials such as phosphorus, carbon, nitrogen, sulfur, and silicon. Furthermore, sediments are known to play an active role in regulating cycles of trace metals, radionuclides, and xenobiotics (Jones and Bowser, 1978). Because of this, knowledge of the chemical diagenesis of sediments is essential to an understanding of materials cycling in freshwater environments.


Lake Sediment Overlie Water Soluble Reactive Phosphorus Interstitial Water Freshwater Sediment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aller, R. C., 1977, The influence of deposit feeding benthos on chemical diagenesis of marine sediments, Ph.D thesis, Yale University, New Haven, Connecticut.Google Scholar
  2. Aller, R. C., 1978, The effects of animal—sediment interactions on geochemical processes near the sediment—water interface, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 157–172, Academic Press, New York.Google Scholar
  3. Aller, R. C., and Cochran, J. K., 1976, 234-Th/238-U disequilibrium in near shore sediments: Particle reworking and diagenetic time scales, Earth Planet. Sci. Lett. 20: 37–50.Google Scholar
  4. Aller, R. C., and Dodge, R. E., 1974, Animal-sediment relations in a tropical lagoon-Discovery Bay, Jamaica, J. Mar. Res. 32: 209–232.Google Scholar
  5. Aller, R. C., and Yingst, J. Y., 1978, Biogeochemistry of tube-dwellings: A study of the sedentary polychaete Amphitrite ornata (Leidy), J. Mar. Res. 36: 201–254.Google Scholar
  6. Alsterberg, G., 1922, Die respiratorischen Mechanismen der Tubificiden, Lunds Univ. Arsskr. 18: 1–176.Google Scholar
  7. Alsterberg, G., 1925, Die Nahrungszirkulation einiger Binnensetypen, Archiv. Hydrobiol. 15: 291–338.Google Scholar
  8. Amiard-Triquet, C., 1975, Etude experimentale de la contamination par le cerium 144 et le fer 59 d’un sédiment à Arenicola marina L. (Annelide Polychete), Cah. Biol. Mar. 15: 483–494.Google Scholar
  9. Andersen, J. M., 1977, Importance of the denitrification process for the rate of degradation of organic matter in lake sediments, in: Interactions between Sediments and Fresh Water ( H. L. Golterman, ed.), pp. 357–362, Junk, The Hague.Google Scholar
  10. Appleby, A. G., and Brinkhurst, R. O., 1970, Defecation rate of three tubificid oligochaetes found in the sediment of Toronto Harbour, Ontario, J. Fish. Res. Board Can. 27: 1971–1982.Google Scholar
  11. Baas Becking, L. G. M., Kaplan, I. R., and Moore, D., 1960, Limits of the natural environment in terms of pH and oxidation-reduction potentials, J. Geol. 68: 243–284.Google Scholar
  12. Ben-Yaakov, S., 1973, pH buffering of pore water of recent anoxic marine sediments, Limnol. Oceanogr. 18: 86–94.Google Scholar
  13. Berner, R. A., 1963, Electrode studies of hydrogen sulfide in marine sediments, Geochim. Gosmochim. Acta 27: 563–575.Google Scholar
  14. Berner, R. A., 1964a, An idealized model of dissolved sulfate distribution in recent sediments, Geochim. Cosmochim. Acta 28: 1497–1503.Google Scholar
  15. Berner, R. A., 1964b, Distribution and diagenesis of sulfur in some sediments from the Gulf of California, Mar. Geol. 1: 117–140.Google Scholar
  16. Berner, R. A., 1970, Sedimentary pyrite formation, Am. J. Sci. 268: 1–23.Google Scholar
  17. Berner, R. A., 1972, Sulfate reduction, pyrite formation, and the oceanic sulfur budget, in: Nobel Symposium 20: The Changing Chemistry of the Oceans ( D. Dyrssen and D. Jagner, eds.), pp. 347–361, Almquist and Wiksell, Stockholm.Google Scholar
  18. Berner, R. A., 1974, Kinetic models for the early diagenesis of nitrogen, sulfur, phosphorus, and silicon in anoxic marine sediments, in: The Sea, Volume 5: Marine Chemistry ( E. D. Goldberg, ed.), pp. 427–450, John Wiley and Sons, New York.Google Scholar
  19. Berner, R. A., 1976, The benthic boundary layer from the viewpoint of a geochemist, in: The Benthic Boundary Layer ( I. N. McCave, ed.), pp. 33–55, Plenum Press, New York.Google Scholar
  20. Berner, R. A., 1980, Early Diagenesis: A Theoretical Approach, Princeton University Press, Princeton, N.J.Google Scholar
  21. Brinkhurst, R. O., 1974, The Benthos of Lakes, St. Martin’s Press, New York.Google Scholar
  22. Burns, N. M. and Ross, C., 1972, Oxygen-nutrient relationships in the Central Basin of Lake Erie, in: Project Hypo (N. M. Ross and C. Ross, eds.), pp. 85–119, Canadian Center for Inland Waters Paper 6, Canadian Center for Inland Waters, Hamilton, Ontario.Google Scholar
  23. Carmouze, J. P., Golterman, H. L., and Pedro, C., 1977, The neoformation of sediments in Lake Chad; their influence on salinity control, in: Interactions between Sediments and Fresh Water ( H. L. Golterman, ed.), pp. 33–39, Junk, The Hague.Google Scholar
  24. Chamberlain, C. K., 1975, Recent lebensspuren in nonmarine aquatic environments, in: The Study of Trace Fossils ( R. W. Frey, ed.), pp. 431–458, Springer-Verlag, New York.Google Scholar
  25. Chapman, T. W., 1967, The transport properties of concentrated electrolytic solutions, Ph.D. thesis, University of California, Berkeley.Google Scholar
  26. Chatarpaul, L., Robinson, J. B., and Kaushik, N. K., 1979, Role of tubificid worms in nitrogen transformations in stream sediment, J. Fish. Res. Board Can. 36: 673–678.Google Scholar
  27. Chatarpaul, L., Robinson, J. B., and Kaushik, N. K., 1980, Effects of tubificid worms on denitrification and nitrification in stream sediment, Can. J. Fish. Aquat. Sci. 37: 656–663.Google Scholar
  28. Coker, R. E., Shira, A. R., Clark, H. W., and Howard, A. D., 1921, Natural history and propagation of fresh-water mussels, Bull. U.S. Bur. Fish. 37: 77–181.Google Scholar
  29. Cummins, K. W., 1973, Trophic relationships of aquatic insects, Annu. Rev. Entomol. 18: 183–206.Google Scholar
  30. D’Anglejan, B. F., 1967, Origin of marine phosphorites off Baja California, Mexico, Mar. Geol. 5: 15–44.Google Scholar
  31. Davies, S. N., and DeWiest, R. C. M., 1966, Hydrogeology, John Wiley and Sons, New York.Google Scholar
  32. Davis, R. B., 1974a, Stratigraphic effects of tubificids in profundal lake sediments, Limnol. Oceanogr. 19: 466–488.Google Scholar
  33. Davis, R. B., 1974b, Tubificids alter profiles of redox potential and pH in profundal lake sediments, Limnol. Oceanogr. 19: 342–346.Google Scholar
  34. Davis, R. B., Thurlow, D. L., and Brewster, R. E., 1975, Effects of burrowing tubificids on the exchange of phosphorus between lake sediment and overlying water, Verh. Int. Verein. Limnol. 19: 382–394.Google Scholar
  35. Dell, C. I., 1971, Late quaternary sedimentation in Lake Superior, Ph.D. thesis, University of Michigan, Ann Arbor.Google Scholar
  36. Dell, C. I., 1973, Vinianite: An authigenic phosphate mineral in Great Lake sediments, in: Proceedings of the 16th Conference on Great Lakes Research, pp. 1027–1028, International Association for Great Lakes Research, Ann Arbor, Michigan.Google Scholar
  37. Doyle, R. W. S., 1967, Eh and thermodynamic equilibrium in environments containing dissolved ferrous iron, Ph.D. thesis, Yale University, New Haven, Connecticut.Google Scholar
  38. Dutka, B. J., Bell, J. B., and Liu, D. L. S., 1974, Microbiological examination of offshore Lake Erie sediments, J. Fish. Res. Board Can. 31: 299–308.Google Scholar
  39. Edwards, R. W., 1958, The effect of larvae of Chironomus riparius Meigen on the redox potentials of settled activated sludge, Ann. Appl. Biol. 46: 457–464.Google Scholar
  40. Edwards, R. W., and Rolley, H. L. J., 1965, Oxygen consumption of river muds, J. Ecol. 53: 1–19.Google Scholar
  41. Emerson, S., and Widmer, G., 1978, Early diagenesis in anaerobic lake sediments. II. Thermodynamic and kinetic factors controlling the formation of iron phosphate, Geochim. Cosmochim. Acta 42: 1307–1316.Google Scholar
  42. Fisher, J. B., and Matisoff, G., 1981, High resolution vertical profiles of pH in recent sediments, Hybrobiologia 79: 277–284.Google Scholar
  43. Fisher, J. B., and Tevesz, M. J. S., 1975, Distribution and population density of Elliptio complanata (Mollusca) in Lake Pocotopaug, Connecticut, Veliger 18: 332–338.Google Scholar
  44. Fisher, J. B., Lick, W., McCall, P. L., and Robbins, J. A., 1980, Vertical mixing of lake sediments by tubificid oligochaetes, J. Geophys. Res. 85: 3997–4006.Google Scholar
  45. Gallepp, G. W., 1979, Chironomid influence on phosphorous release in sediment—water microcosms, Ecology 60: 547–556.Google Scholar
  46. Gallepp, G. W., Kitchell, J. F., and Bartell, S. M., 1978, Phosphorus release from lake sediments as affected by chironomids, Verh. Int. Verein. Limnol. 20: 458–465.Google Scholar
  47. Ganapati, S. V., 1949, The role of the bloodworm, Chironomus plumosus, in accounting for the presence of phosphorus and excessive free ammonia in the filtrates from the slow sand filters of the Madras water works, Zool. Soc. India J. 6: 41–43.Google Scholar
  48. Gardner, R. L., 1973, Chemical models for sulfate reduction in closed anaerobic marine environments, Geochim. Cosmochim. Acta 37: 53–68.Google Scholar
  49. Glasby, G. P., 1973, Interstitial waters in marine and lacustrine sediments: A review, J. R. Soc. N. Z. 3: 43–59.Google Scholar
  50. Goldberg, E. D., and Koide, M., 1962, Geochronological studies of deep sea sediments by the ionium/thorium method, Geochim. Cosmochim. Acta 26: 417–450.Google Scholar
  51. Goldhaber, M. B., 1974, Equilibrium and dynamic aspects of the marine geochemistry of sulfur, Ph.D. thesis, University of California, Los Angeles.Google Scholar
  52. Goldhaber, M. B., and Kaplan, I. R., 1975a, Apparent dissociation constants of hydrogen sulfide in chloride solutions, Mar. Chem. 3: 83–104.Google Scholar
  53. Goldhaber, M. B., and Kaplan, I. R., 1975b, Controls and consequences of sulfate reduction rates in recent marine sediments, Soil Sci. 119: 42–55.Google Scholar
  54. Gorham, E., 1964, Molybdenum, manganese, and iron in lake muds, Verh. Int. Verein. Limnol. 15: 330–332.Google Scholar
  55. Granéli, W., 1979, The influence of Chironomus plumosus larvae on the exchange of dissolved substances between sediment and water, Hycirobiologia 66: 149–159.Google Scholar
  56. Granéli, W., 1982, The influence of Chironomus plumosus on oxygen uptake of sediment, Arch. Hydrobiol. (in press).Google Scholar
  57. Guinasso, N. L., and Schink, D. R., 1975, Quantitative estimates of biological mixing rates in abyssal sediments, J. Geophys. Res. 80: 3032–3043.Google Scholar
  58. Hargrave, B. T., 1972, Oxidation–reduction potentials, oxygen concentration and oxygen uptake of profundal sediments in a eutrophic lake, Oikos 23: 167–177.Google Scholar
  59. Hargrave, B. T., 1975, Stability in structure and function of the mud–water interface, Verh. Int. Verein. Limnol. 19: 1073–1079.Google Scholar
  60. Harrison, A. G., and Thode, 1958, The kinetic isotope effect in the chemical reduction of sulfate, Tr. Faraday Soc. 53: 1648–1651.Google Scholar
  61. Hayes, F. R., 1964, The mud–water interface, Oceanogr. Mar. Biol. Annu. Rev. 2: 121–145.Google Scholar
  62. Hutchinson, G. E., 1957, A Treatise on Limnology, John Wiley and Sons, New York.Google Scholar
  63. Iovino, A., and Bradley, W., 1969, The role of larval chironomidae in the production of lacustrine copropel in Mud Lake, Marion County, Florida, Limnol. Oceanogr. 14: 898–900.Google Scholar
  64. Ivlev, V. S., 1939, Transformation of energy by aquatic animals. Coefficient of energy consumption by Tubifex tubifex (Oligochaeta), Int. Rev. Ges. Hydrobiol. Hydrogr. 38: 449–458.Google Scholar
  65. Jones, B. F., and Bowser, C. J., 1978, The mineralogy and related chemistry of lake sediments, in: Lakes: Chemistry, Geology, Physics ( A. Lerman, ed.), pp. 179–235, Springer-Verlag, New YorkGoogle Scholar
  66. Jernelöv, A., 1970, Release of methyl mercury from sediments with layers containing inorganic mercury at different levels, Limnol. Oceanogr. 15: 958–960.Google Scholar
  67. Kaplan, I. R., and Rittenberg, S. C., 1964, Microbiological fractionation of sulfur isotopes, J. Gen. Microbiol. 34: 195–212.Google Scholar
  68. Kikuchi, E., and Kurihara, Y., 1977, In vitro studies on the effects of tubificids on the biological, chemical, and physical characteristics of submerged ricefield soil and overlying water, Oikos 29: 348–356.Google Scholar
  69. Kirchner, W. B., 1975, The effect of oxidized material on the vertical distribution of freshwater benthic fauna, Freshwater Biol. 5: 423–429.Google Scholar
  70. Krezoski, J. R., 1981, The influence of zoobenthos on fine-grained particle reworking and benthic solute transport in Great Lakes sediments. Ph.D. thesis, University of Michigan, Ann Arbor.Google Scholar
  71. Krezoski, J. R., Mozley, S. C., and Robbins, J. A., 1978, Influence of benthic macroinvertebrates on mixing of profundal sediments in southeastern Lake Huron, Limnol. Oceanogr. 23: 1011–1016.Google Scholar
  72. Kuznetsov, S. I., 1970, The Microflora of Lakes and its Geochemical Activity, University of Texas Press, Austin.Google Scholar
  73. Lafon, G. M., and Mackenzie, F. T., 1966, Early evolution of the oceans—A weathering model, in: Studies in Paleo-Oceanography (W. W. Hay, ed.), Soc. Econ. Paleontol. Mineral. Spec. Publ. 20: 205–218.Google Scholar
  74. Lee, G. F., 1970, Factors affecting the transfer of materials between water and sediments, University of Wisconsin Water Resources Center, Eutrophication Information Program, Literature Review 1, University of Wisconsin, Madison.Google Scholar
  75. Li, Y.-H., and Gregory, S., 1974, Diffusion of ions in sea water and in deep sea sediments, Geochim. Cosmochim Acta 38: 703–714.Google Scholar
  76. Lundbeck, J., 1926, Die Bodentierwelt Norddeutschen Seen, Arch. Hydrobiol. Suppl 7.Google Scholar
  77. Lyman, F. E., 1943, Swimming and burrowing activities of mayfly nymphs of the genus Hexigenia, Ann. Entomol. Soc. Am. 26: 250–256.Google Scholar
  78. McCaffrey, R. J., Meyers, A. C., Davey, E., Morrison, G., Bender, M., Luedtke, N., Cullen, D., Froelich, P., and Klinkhammer, G., 1980, The relation between pore water chemistry and benthic fluxes of nutrients and manganese in Narragansett Bay, Rhode Island, Limnol. Oceanogr. 25: 31–44.Google Scholar
  79. McCall, P. L., 1979, Effects of deposit feeding oligochaetes on particle size and settling velocity of Lake Erie sediments, J. Sediment. Petrol. 49: 813–818.Google Scholar
  80. McCall, P. L., and Fisher, J. B., 1980, Effects of tubificid oligochaetes on physical and chemical properties of Lake Erie sediments, in: Aquatic Oligochaete Biology ( R. O. Brinkhurst and D. G. Cook, eds.), pp. 253–318, Plenum Press, New York.Google Scholar
  81. McCall, P. L., Tevesz, M. J. S., and Schwelgien, S. F., 1979, Sediment mixing by Lampsilis radiata siliquoidea (Mollusca) from western Lake Erie, J. Great Lakes Res. 5: 105–111.Google Scholar
  82. McLachlan, A. J., and McLachlan, S. M., 1976, Development of the mud habitat during the filling of two new lakes, Freshwater Biol. 6: 59–67.Google Scholar
  83. Manheim, F. T., 1970, The diffusion of ions in unconsolidated sediments, Earth Planet. Sci. Lett. 9: 307–309.Google Scholar
  84. Manheim, F. T., and Sayles, F. L., 1974, Composition and origin of interstitial waters of marine sediments, in: The Sea, Volume 5: Marine Chemistry ( E. D. Goldberg, ed.), pp. 527–568, John Wiley and Sons, New York.Google Scholar
  85. Marzolf, G. R., 1965, Substrate relations of the burrowing amphipod Pontoporeia affinis in Lake Michigan, Ecology 46: 579–592.Google Scholar
  86. Milbrink, G., 1969, Microgradient at the mud–water interface, Rep. Inst. Freshwater Res. Drottningholm 49: 129–148.Google Scholar
  87. Monakov, A. K., 1972, Review of studies on feeding of aquatic invertebrates conducted at the Institute of Biology of Inland Waters, Academy of Sciences, USSR, J. Fish. Res. Board Can. 29: 363–383.Google Scholar
  88. Mortimer, C. H., 1941, The exchange of dissolved substances between mud and water in lakes, J. Ecol. 29: 280–329.Google Scholar
  89. Mortimer, C. H., 1942, The exchange of dissolved substances between mud and water in lakes, J. Ecol. 30: 147–201.Google Scholar
  90. Mortimer, C. H., 1971, Chemical exchanges between sediments and water in the Great Lakes—Speculations on probable regulatory mechanisms, Limnol. Oceanogr. 16: 387–404.Google Scholar
  91. Müller, G., and Forstner, U., 1973, Recent iron ore formation in Lake Malawi, Africa, Miner. Deposita 8: 278–290.Google Scholar
  92. Neame, P. A., 1975, Benthic oxygen and phosphorus dynamics in Castle Lake, California, Ph.D. thesis, University of California, Davis.Google Scholar
  93. Neame, P. A., 1977, Phosphorus flux across the sediment–water interface, in: Interactions between Sediments and Fresh Water ( H. L. Golterman, ed.), pp. 307–312, Junk, The Hague.Google Scholar
  94. Newell, R. C., 1970, Biology of Intertidal Animals, Elsevier, New York.Google Scholar
  95. Norvell, W. A., 1974, Insolubilization of inorganic phosphate by anoxic lake sediment, Soil Sci. Soc. Am. Proc. 38: 441–445.Google Scholar
  96. Nozaki, Y., Cochran, J. K., Turekian, K. K., and Keller, G., 1977, Radiocarbon and (210) Pb distribution in submersible taken deep-sea cores from project FAMOUS, Earth Planet. Sci. Lett. 34: 167–173.Google Scholar
  97. Nriagu, J. O., 1968, Sulfur metabolism and sedimentary environment: Lake Mendota, Wisconsin, Limnol. Oceanogr. 13: 430–439.Google Scholar
  98. Nriagu, J. O., 1975, Sulphur isotopic variations in relation to sulphur pollution of Lake Erie, in: Isotope Ratios as Pollutant Source and Behavior Indicators, pp. 77–93, IAEA-SM191/28, International Atomic Energy Agency, Vienna.Google Scholar
  99. Nriagu, J. O., 1976, Phosphate—clay mineral relations in soils and sediments, Can. J. Earth Sci. 13: 717–736.Google Scholar
  100. Nriagu, J. O., and Dell, C. I., 1974, Diagenetic formation of iron phosphates in recent lake sediments, Am. Mineral. 59: 934–946.Google Scholar
  101. Otsuki, A., and Wetzel, R. G., 1972, Coprecipitation of phosphate with carbonates in a marl lake, Limnol. Oceanogr. 17: 763–767.Google Scholar
  102. Parry, G., 1960, Excretion, in: The Physiology of Crustacea ( T. H. Waterman, ed.), pp. 341–363, Academic Press, New York.Google Scholar
  103. Poddubnaya, T. L., 1961, Concerning the feeding of the high density species of tubificids in Rybinsk Reservoir, Tr. Inst. Biol. Vodokhran. Akad. Nauk SSSR 4: 219–231.Google Scholar
  104. Poddubnaya, T. L., and Sorokin, Yu. I., 1961, The depth of the layer of optimal feeding of tubificids in connection with their movements in the sediment, Izv. Inst. Biol. Vodokhran. AN SSSR 10: 14–17.Google Scholar
  105. Postgate, J. R., 1951, The reduction of sulphur compounds by Desulphovibrio desulphuricans, J. Gen. Microbiol. 5: 725–738.Google Scholar
  106. Potts, W. T. W., 1954a, The energetics of osmotic regulation in brackish and freshwater animals, J. Exp. Biol. 31: 618–630.Google Scholar
  107. Potts, W. T. W., 1954b, The rate of urine production of Anodonta cygnea, J. Exp. Biol. 31: 614–617.Google Scholar
  108. Presley, B. J., and Kaplan, I. R., 1968, Changes in dissolved sulfate, calcium, and carbonate from interstitial water of near-shore sediments, Geochim. Cosmochim. Acta 32: 1037–1048.Google Scholar
  109. Ramm, A. E., and Bella, D. A., 1974, Sulfide production in anaerobic microcosms, Limnol. Oceanogr. 19: 110–118.Google Scholar
  110. Rayera, O., 1955, Amount of mud displaced by some freshwater oligochaeta in relation to depth, Mem. Ist. Ital. Idrobiol. 8 (suppl.): 247–264.Google Scholar
  111. Rees, C. E., 1973, A steady state model for sulfur isotope fractionation in bacterial reduction process, Geochim. Cosmochim. Acta 37: 1141.Google Scholar
  112. Reid, R. C., Prausnitz, J. M., and Sherwood, T. K., 1977, The Properties of Gases and Liquids, McGraw-Hill, New York.Google Scholar
  113. Rhoads, D. C., 1970, Mass properties, stability, and ecology of marine muds related to burrowing activity, in: Trace Fossils (T. P. Crimes and J. C. Harper, eds.), pp. 391–406, Geol. J. Spec. Issue 3.Google Scholar
  114. Rhoads, D. C., 1974, Organism—sediment relations on the muddy sea floor, Oceanogr. Mar. Biol. Annu. Rev. 12: 263–300.Google Scholar
  115. Rhoads, D. C., and Young, D. K., 1970, The influence of deposit feeding organisms on sediment stability and community trophic structure, J. Mar. Res. 28: 150–178.Google Scholar
  116. Riley, J. P., 1971, The major and minor elements in seawater, in: Introduction to Marine Chemistry ( J. P. Riley and R. Chester, eds.), pp. 60–101, Academic Press, New York.Google Scholar
  117. Robbins, J. A., 1978, Geochemical and geographical applications of radioactive lead, in: Biogeochemistry of Lead ( J. O. Nriagu, ed.), pp. 285–337, Elsevier, Amsterdam.Google Scholar
  118. Robbins, J. A., Krezoski, J. R., and Mozley, S. C., 1977, Radioactivity in sediments of the Great Lakes: Post-depositional redistribution by deposit feeding organisms, Earth Planet. Sci. Lett. 36: 325–333.Google Scholar
  119. Robbins, J. A., McCall, P. L., Fisher, J. B., and Krezoski, J. R., 1979, Effects of deposit feeders on migration of cesium-137 in lake sediments, Earth Planet. Sci. Lett. 42: 277–287.Google Scholar
  120. Robinson, R. A., and Stokes, R. H., 1959, Electrolyte Solutions, Butterworths, London.Google Scholar
  121. Savilov, A. I., 1957, Biolgical aspects of the bottom fauna grouping of the North Okhotsk Sea, Tr. Inst. Okeanol. Mar. Biol. 20: 67–136.Google Scholar
  122. Schumacher, A., 1963, Quantitative Aspekte der Beziehung zwischen Stärke der Tubif icidenbesiedlung und Schichtdicke der Oxydationzone in den Süsswasserwatten der Unterelbe, Arch. Fischwiss. 14: 48–51.Google Scholar
  123. Shapiro, J., Edmondson, W. T., and Allison, D. E., 1971, Changes in the chemical composition of sediments of Lake Washington, Limnol. Oceanogr. 16: 437–452.Google Scholar
  124. Staddon, B. W., 1969, Water balance in Ilyocoris, Naucoridae, J. Exp. Biol. 51: 643–665.Google Scholar
  125. Stamm, H. H., and Kohlschutter, H. W., 1965, Die Sorption von Phosphationene an Eisen (III)-Hydroxide, J. Inorg. Nucl. Chem. 27: 2103–2108.Google Scholar
  126. Stobbart, R. H., and Shaw, J., 1974, Salt and water balance: Excretion, in: The Physiology of Insects ( M. Rockstein, ed.), pp. 361–446, Academic Press, New York.Google Scholar
  127. Stumm, W., and Morgan, J. J., 1970, Aquatic Chemistry, John Wiley and Sons, New York.Google Scholar
  128. Swain, F. M., 1965, Geochemistry of some quaternary lake sediments of North America, in: The Quaternary of the United States ( H. E. Wright and D. G. Frey, eds.), pp. 765–781, Princeton University Press, Princeton, New Jersey.Google Scholar
  129. Tessenow, U., 1964, Experimentaluntersuchungen zur Kieselsäurerückführung aus dem Schlamm der See durch Chironomidenlarven (Plumosus-Gruppe), Arch. Hydrobiol. 60: 497–504.Google Scholar
  130. Tevesz, M. J. S., and McCall, P. L., 1979, Evolution of substratum preference in bivalves (Mollusca), J. Paleontol. 53: 112–120.Google Scholar
  131. Tevesz, M. J. S., Soster, F., and McCall, P. L., 1980, The effects of size selective feeding by oligochaetes on the physical properties of river sediments, J. Sediment. Petrol. 50: 561–568.Google Scholar
  132. Turpaeva, E. P., 1957, Food interrelationships of dominant species in marine benthic biocoenoses, Tr. Inst. Okeanol. Mar. Biol. 20: 137–148.Google Scholar
  133. Upchurch, S. B., 1976, Chemical characteristics of the Great Lakes, in: Great Lakes Basin Framework Study, Appendix 4: Limnology of Lakes and Embayments, pp. 151–238, Public Information Offices, Great Lakes Basin Commission, Ann Arbor, Michigan.Google Scholar
  134. Vallentyne, J. R., 1961, On the rate of formation of black spheres in recent sediments, Verh. Int. Verein. Limnol. 14: 291–295.Google Scholar
  135. Vallentyne, J. R., 1963, Isolation of pyrite spherules from recent sediments, Limnol. Oceanogr. 8: 16–30.Google Scholar
  136. Vogel, S., and Bretz, W. L., 1972, Interfacial organisms: Passive ventilation in the velocity gradients near surfaces, Science 175: 210.Google Scholar
  137. Wachs, B., 1967, Die Oligochaeten-Fauna der Fleissgewasser unter besonderer Berücksichtigung der Beziehungen zwischen der Tubificiden-Besiedlung und dem Substrat, Arch. Hydrobiol. 63: 310–386.Google Scholar
  138. Walker, K. R., and Bambach, R. K., 1974, Feeding by benthic invertebrates: Classification and terminology for paleoecological analysis, Lethaia 7: 67–78.Google Scholar
  139. Walshe, B. M., 1947, Feeding mechanisms of Chironomous larvae, Nature 160: 474.Google Scholar
  140. Weiler, R. R., 1973, The interstitial water composition in the sediments of the Great Lakes. I. Western Lake Ontario, Limnol. Oceanogr. 18: 918–931.Google Scholar
  141. Weissenbach, H., 1974, Untersuchungen zum Phophorhaushalt eines Hochgebirgsees (Vor-der Finstertaler See, Kühtai, Tirol) unter besonderer Berücksichtigung der Sedimente, Dissertation, Leopold Franzens-Universität, Innsbruck.Google Scholar
  142. Wetzel, R. G., 1975, Limnology, W. B. Saunders, Philadelphia.Google Scholar
  143. Williams, J. D. H., Jaquet, J. M., and Thomas, R. L., 1976a, Forms of phosphorus in the surficial sediments of Lake Erie, J. Fish. Res. Board Can. 33: 413–429.Google Scholar
  144. Williams, J. D. H., Murphy, T. P., and Mayer, T., 1976b, Rates of accumulation of phosphorus forms in Lake Erie sediments, J. Fish. Res. Board Can. 33: 430–439.Google Scholar
  145. Winfrey, M. R., and Zeikus, J. G., 1979, Anaerobic metabolism of immediate methane precursors in Lake Mendota, Appl. Environ. Microbiol. 37: 244–253.Google Scholar
  146. Wood, L. W., 1975, Role of oligochaetes in the circulation of water and solutes across the mud—water interface, Verh. Int. Verein. Limnol. 19: 1530–1538.Google Scholar
  147. Zinder, S. H., and Brock, T. D., 1978, Methane, carbon dioxide, and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments, Appl. Environ. Microbiol. 35: 344–352.Google Scholar
  148. ZoBell, C. E., 1946, Studies on redox potential of marine sediments, Bull. Am. Assoc. Petrol. Geol. 30: 477–513.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • J. Berton Fisher
    • 1
  1. 1.Department of Geological SciencesCase Western Reserve UniversityClevelandUSA

Personalised recommendations