Advertisement

Calmodulin in the Regulation of Calcium Fluxes in Cardiac Sarcolemma

  • Ernesto Carafoli
Part of the Advances in Myocardiology book series (ADMY)

Abstract

Three systems mediate the fluxes of calcium across heart sarcolemma: the slow calcium channel (influx), the ATP-dependent calcium pump (efflux), and the Na+/Ca2+ exchanger (efflux, but possibly also influx). Calmodulin regulates the pumping ATPase by direct interaction and also by activating a protein kinase. The Na+/Ca2+ exchanger is modulated by calmodulin via a phosphorylation—dephosphorylation cycle. Both the kinase and the phosphatase are membrane-bound and calmodulin-sensitive. The kinase has higher Ca2+ affinity than the phosphatase.

Keywords

Sarcoplasmic Reticulum Acidic Phospholipid cAMP Dependent Phosphorylation Sarcolemmal Vesicle Cardiac Sarcolemma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Langer, G. A., Frank, J. B., and Brady, A. J. 1976. In: A. C. Guyton and A. W. Cowley (eds.), International Review of Physiology II. Vol. 9, pp. 191–226. University Park Press, Baltimore.Google Scholar
  2. 2.
    Caroni, P., and Carafoli, E. 1980. An ATP-dependent calcium pumping system in dog heart sarcolemma. Nature (London) 283:765–767.CrossRefGoogle Scholar
  3. 3.
    Caroni, P., and Carafoli, E. 1981. The Ca2+-pumping ATPase of heart sarcolemma: Characterization, calmodulin dependence, and partial purification. J. Biol. Chem. 256:3263–3270.PubMedGoogle Scholar
  4. 4.
    Caroni, P., Zurini, M., and Clark, A. 1982. The calcium pumping ATPase of heart sarcolemma. Ann. N. Y. Acad. Sci. 402:402–421.PubMedCrossRefGoogle Scholar
  5. 5.
    Caroni, P., Zurini, M., Clark, A., and Carafoli, E. 1982. Further characterization and reconstitution of the purified Ca2+-pumping ATPase of heart sarcolemma. J. Biol. Chem. 258:7305–7310.Google Scholar
  6. 6.
    Adunyah, E. S., Niggli, V., and Carafoli, E. 1982. The anticalmodulin drugs trifluoperazine and R24571 remove the activation of the purified erythrocyte Ca2+ ATPase by acidic phospholipids and by controlled proteolysis. FEBS Lett. 143:65–68.PubMedCrossRefGoogle Scholar
  7. 7.
    Niggli, V., Adunyah, E. S., and Carafoli, E. 1981. Acidic phospholipids, unsaturated fatty acids, and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+ ATPase. J. Biol. Chem. 256:8688–8592.Google Scholar
  8. 8.
    Caroni, P., and Carafoli, E. 1981. Regulation of Ca2+-pumping ATPase of heart sarcolemma by a phosphorylation-dephosphorylation process. J. Biol. Chem. 256:9371–9373.PubMedGoogle Scholar
  9. 9.
    Vetter, R., Haase, H., and Will, H. 1982. Potentiating effect of calmodulin and catalytic subunit of cyclic-AMP-dependent protein kinase on ATP-dependent Ca2+ transport by cardiac sarcolemma. FEBS Lett. 148:326–330.PubMedCrossRefGoogle Scholar
  10. 10.
    Lamers, J. M. J., Stinis, J. T., and De Jonge, H. R. 1981. On the role of cyclic AMP and Ca2+-calmodulin-dependent phosphorylation in the control of (Ca2+ + Mg2+)-ATPase of cardiac sarcolemma. FEBS Lett. 127:139–143.PubMedCrossRefGoogle Scholar
  11. 11.
    Le Peuch, C. J., Haiech, J., and Demaille, J. G. 1979. Concerted regulation of cardiac sarcoplasmic reticulum: Ca2+ transport by cyclic adenine monophosphate-dependent and Ca2+-calmodulin-dependent phosphorylation. Biochemistry 18:5110–5117.Google Scholar
  12. 12.
    Chiesi, M., Gasser, J., and Carafoli, E. 1983. Phospholamban of cardiac sarcoplasmic reticulum consists of two functionally distinct proteolipids. FEBS Lett. 160:61–66.PubMedCrossRefGoogle Scholar
  13. 13.
    Reuter, H., and Seitz, N. 1968. The dependence of Ca2+ efflux from cardiac muscle on temperature and external ion composition. J. Physiol. (London) 195:451–470.Google Scholar
  14. 14.
    Reeves, J. P., and Sutko, J. L. 1979. Sodium-calcium exchange in cardiac membrane vesicles. Proc. Natl. Acad. Sci. U.S.A. 76:590–594.PubMedCrossRefGoogle Scholar
  15. 15.
    Pitts, B. J. R. 1979. Stoichiometry of sodium calcium exchange in cardiac sarcolemmal vesicles. J. Biol. Chem. 254:6232–6235.PubMedGoogle Scholar
  16. 16.
    Caroni, P., Reinlib, L., and Carafoli, E. 1980. Charge movements during Na-Ca2+ exchange in heart sarcolemmal vesicles. Proc. Natl. Acad. Sci. U.S.A. 77:6354–6358.PubMedCrossRefGoogle Scholar
  17. 17.
    Reeves, J. P., and Sutko, J. L. 1980. Sodium-calcium exchange activity generates a current in cardiac membrane vesicles. Science 208:1461–1464.PubMedCrossRefGoogle Scholar
  18. 18.
    Philipson, K. D., and Nishimoto, A. Y. 1980. Na+-Ca2+ exchange is affected by membrane potential in cardiac sarcolemmal vesicles. J. Biol. Chem. 255:6880–6882.PubMedGoogle Scholar
  19. 19.
    Di Polo, R. 1974. Effect of ATP on the calcium efflux in dialyzed squid giant axons. J. Gen. Physiol. 64:503–517.CrossRefGoogle Scholar
  20. 20.
    Di Polo, R. 1977. Characterization of the ATP-dependent calcium efflux in dialyzed squid giant axons. J. Gen. Physiol. 69:795–813.CrossRefGoogle Scholar
  21. 21.
    Caroni, P., and Carafoli, E. 1983. The regulation of the Na+-Ca2+ exchanger of heart sarcolemma. Eur. J. Biochem. 132:451–460.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Ernesto Carafoli
    • 1
  1. 1.Laboratory of BiochemistrySwiss Federal Institute of Technology (ETH)ZurichSwitzerland

Personalised recommendations