The Calmodulin-Dependent Phosphorylation of Cardiac Myosin

  • Franz Hofmann
  • Manfred Zimmer
Part of the Advances in Myocardiology book series (ADMY)

Abstract

Cardiac myosin light chains are phosphorylated in vivo and in vitro. The enzyme, myosin light-chain kinase, has been purified and found to be very specific for cardiac myosin light chains. Experiments with skinned cardiac fibers suggest that phosphorylation of myosin light chain-2 decreases ATP consumption, presumably by lowering the cross-bridge cycle. These results are discussed in this chapter.

Keywords

Adenosine Tryptophan Fluores Catecholamine Cardiol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krebs, E. G., and Beavo, J. A. 1979. Phosphorylation—dephosphorylation of enzymes. Annu. Rev. Biochem. 48:923–959.PubMedCrossRefGoogle Scholar
  2. 2.
    Cohen, P. 1982. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature (London) 296:613–620.CrossRefGoogle Scholar
  3. 3.
    Hofmann, F., and Schultz, G. 1980. Regulation of cellular functions by protein phosphorylation. Arzneim.-Forsch. 30(II):1991–1995.Google Scholar
  4. 4.
    Sparrow, M. P., Mrwa, W., Hofmann, F., and Rüegg, J. C. 1981. Calmodulin is essential for smooth muscle contraction. FEBS Lett. 125:141–145.PubMedCrossRefGoogle Scholar
  5. 5.
    Adelstein, R. S. 1982. Calmodulin and the regulation of actin—myosin interaction in smooth muscle and nonmuscle cells. Cell 30:349–350.PubMedCrossRefGoogle Scholar
  6. 6.
    Walsh, M. P., Bridenbaugh, R., Kerrick, W. G. L., and Hartshorne, D. J. 1983. Gizzard Ca2+-independent myosin light chain kinase: Evidence in favor for the phosphorylation theory. Fed. Am. Soc. Exp. Biol. Proc. 42:45–50.Google Scholar
  7. 7.
    Perrie, W. T., Smillie, L. B., and Perry, S. V. 1973. A phosphorylated light-chain compound of myosin from skeletal muscle. Biochem. J. 135:151–164.PubMedGoogle Scholar
  8. 8.
    Stull, J. T., Blumenthal, D. K., and Cooke, R. 1980. Regulation of contraction of myosin phosphorylation: A comparison between smooth and skeletal muscles. Biochem. Pharmacol. 29:2537–2543.PubMedCrossRefGoogle Scholar
  9. 9.
    Scholey, J. M., Smith, R. C., Drenckham, D., Groschel-Stewart, U., and Kendrick-Jones J. 1982. Thymus myosin. J. Biol. Chem. 257:7737–7745.PubMedGoogle Scholar
  10. 10.
    Weber, A., and Murray, J. M. 1973. Regulation of muscle contraction by calcium. Physiol. Rev. 53:612–673.PubMedGoogle Scholar
  11. 11.
    Lehmann, W. 1978. Thick-filament-linked calcium regulation in vertebrate striated muscle. Nature (London) 274:80–81.CrossRefGoogle Scholar
  12. 12.
    Bárány, K., and Bárány, M. 1977. Phosphorylation of the 18,000-dalton light chain of myosin during a single tetanus of frog muscle. J. Biol. Chem. 252:4752–4754.PubMedGoogle Scholar
  13. 13.
    Bagishaw, C. R., and Kendrick-Jones, J. 1979. Characterization of homologous divalent metal ion binding sites of vertebrate and molluscan myosins using electron paramagnetic resonance spectroscopy. J. Mol. Biol. 130:317–336.CrossRefGoogle Scholar
  14. 14.
    Kendrick-Jones, J., Szenthiralyi, E. M., and Szent-Gyorgyi, A. G. 1976. Regulatory light chains in myosins. J. Mol. Biol. 104:747–775.PubMedCrossRefGoogle Scholar
  15. 15.
    Morimoto, K., and Harrington, W. F. 1974. Evidence for structural changes in vertebrate thick filament induced by calcium. J. Mol. Biol. 88:693–709.PubMedCrossRefGoogle Scholar
  16. 16.
    Kardami, E., and Gratzer, W. B. 1982. Conformational effects of cation binding myosin and their relation to phosphorylation. Biochemistry 21:1186–1191.PubMedCrossRefGoogle Scholar
  17. 17.
    Kardami, E., and Gratzer, W. B. 1982. Interaction of cardiac myosin and its light chains with calcium ions and regulation of binding by phosphorylation. J. Mol. Cell. Cardiol. 14:73–80.PubMedCrossRefGoogle Scholar
  18. 18.
    Holroyde, M. J., Potter, J. D., and Solaro, R. J. 1979. The calcium binding properties of phosphorylated and unphosphorylated cardiac and skeletal myosins. J. Biol. Chem. 254:6478–6482.PubMedGoogle Scholar
  19. 19.
    Marban, E., Rink, T. J., Tsien, R. W., and Tsien, R. Y. 1980. Free calcium in heart muscle at rest and during contraction measured with Ca2+-sensitive micro electrodes. Nature (London) 286:845–850.CrossRefGoogle Scholar
  20. 20.
    Holroyde, M. J., Small, O. A. P., Howe, E., and Solaro, R. J. 1979. Isolation of cardiac myofibrils and myosin light chains with in vivo levels of light chain phosphorylation. Biochem. Biophys. Acta 587:628–637.PubMedCrossRefGoogle Scholar
  21. 21.
    Kopp, S. J., and Bárány, M. 1979. Phosphorylation of the 19,000-dalton light chain of myosin in perfused rat heart under the influence of negative and positive inotropic agents. J. Biol. Chem. 254:12,007–12,012.Google Scholar
  22. 22.
    Jeacocke, S. A., and England, P. J. 1980. Phosphorylation of myosin chains in perfused rat hearts. Biochem. J. 188:763–768.PubMedGoogle Scholar
  23. 23.
    High, C. W., and Stull, J. T. 1980. Phosphorylation of myosin in perfused rabbit and rat hearts. Am. J. Physiol. 239:H756-H764.PubMedGoogle Scholar
  24. 24.
    Westwood, S. A., and Perry, S. V. 1981. The effect of adrenaline on the phosphorylation of the P light chain of myosin and troponin I in the perfused rabbit heart. Biochem. J. 197:183–185.Google Scholar
  25. 25.
    Resink, T. J., Gevers, V., Noakes, T. D., and Opie, L. H. 1981. Increased cardiac myosin ATPase activity as a biochemical adaptation to running training: Enhanced response to catecholamines and a role for myosin phosphorylation. J. Mol. Cell. Cardiol. 13:679–694.PubMedCrossRefGoogle Scholar
  26. 26.
    Winegard, S., Mellellan, G., Tuchar, M. and Lis, L. E. 1983. Cyclic AMP regulation of myosin isozymes in mammalian cardiac muscle. J. Gen. Physiol. 81:749–765.CrossRefGoogle Scholar
  27. 27.
    Crow, M. T., and Kushmerick, M. J. 1982. Myosin light chain phosphorylation is associated with a decrease in the energy cost for contraction in fast twitch mouse muscle. J. Biol. Chem. 257:2121–2124.PubMedGoogle Scholar
  28. 28.
    Stewart, A. A., Ingebritsen, T. S., Manalan, A., Klee, L. B. and Cohen, P. 1982. Discovery of a Ca2+- and calmodulin-dependent protein phosphatase. FEBS Lett. 137:80–84.PubMedCrossRefGoogle Scholar
  29. 29.
    Wolf, A., and Hofmann, F. 1980. Purification of myosin light chain kinase from bovine cardiac muscle. Proc. Natl. Acad. Sci. U.S.A. 77:5852–5855.PubMedCrossRefGoogle Scholar
  30. 30.
    Hofmann, F., and Wolf, H. 1981. Basic properties of myosin light chain kinase from bovine cardiac muscle. Cold Spring Harbor Conf. Cell Proliferation: Protein Phosphorylation 8:841–847.Google Scholar
  31. 31.
    Edelman, A. M., and Krebs, E. G. 1982. Phosphorylation of skeletal muscle myosin light chain kinase by the catalytic subunit of cAMP-dependent protein kinase. FEBS Lett. 138:293–298.PubMedCrossRefGoogle Scholar
  32. 32.
    Walsh, M. P., Vellet, B., Autric, F., and Demaille, J. G. 1979. Purification and characterization of bovine cardiac calmodulin-dependent myosin light chain kinase. J.Biol. Chem. 254:12,136–12,144.Google Scholar
  33. 33.
    Guerriero, V., Jr., Rowley, D. R., and Means, A. R. 1981. Production and characterization of an antibody to myosin light chain kinase and intracellular localization of the enzyme. Cell 27:449–458.PubMedCrossRefGoogle Scholar
  34. 34.
    Cavadore, J. G., Molla, A., Harricane, M.-G., Gabrion, J., Benyamin, Y., and Demaille, J. G. 1982. Subcellular localization of myosin light chain kinase in skeletal, cardiac, and smooth muscles. Proc. Natl. Acad. Sci. U.S.A. 79: 3475–3479.PubMedCrossRefGoogle Scholar
  35. 35.
    Adelstein, R. S., Conti, M. B., Hathaway, D. R., and Klee, C. B. 1978. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3 ′:5 ′-monophosphate-dependent protein kinase. J. Biol. Chem. 253:8347–8350.PubMedGoogle Scholar
  36. 36.
    Flockerzi, V., Mewes, R., Ruth, P., and Hofmann, F. 1983. Phosphorylation of purified bovine cardiac sarcolemma and potassium stimulated calcium uptake. Eur. J. Biochem. 135:131–142.PubMedCrossRefGoogle Scholar
  37. 37.
    Blumenthal, D. K., and Stull, J. T. 1980. Activation of skeletal muscle myosin light chain kinase by calcium (2 +) and calmodulin. Biochemistry 19:5608–5614.PubMedCrossRefGoogle Scholar
  38. 38.
    Crouch, T. H., Holroyde, M. J., Collins, J. H., Solaro, R. J., and Potter, J. D. 1981. Interaction of calmodulin with skeletal muscle myosin light chain kinase. Biochemistry 20:6318–6325.PubMedCrossRefGoogle Scholar
  39. 39.
    Johnson, J. D., Holroyde, M. J., Crouch, T. H., Solaro, R. J., and Potter, J. D. 1981. Fluorescence studies of the interaction of calmodulin with myosin light chain kinase. J. Biol. Chem. 256:12,194–198.Google Scholar
  40. 40.
    Janko, P., Wolf, H., and Hofmann, F. 1982. On the activation mechanism of cardiac myosin light chain kinase. Horm. Cell Regulation 6:27–35.Google Scholar
  41. 41.
    Cooke, R., Franks, K., and Stull, J. T. 1982. Myosin phosphorylation regulates the ATPase activity of permeable skeletal muscle fibers. FEBS Lett. 144:33–37.PubMedCrossRefGoogle Scholar
  42. 42.
    Bhan, A., Malhotra, A., Scheuer, J., Conti, M.-A., and Adelstein, R. S. 1981. Subunit function in cardiac myosin. J. Biol. Chem. 256:7741–7743.PubMedGoogle Scholar
  43. 43.
    Pfitzer, G., Hofmann, F., Eubler, D., and Rüegg, J. C. 1982. Contractility of skinned cardiac muscle may be modulated by cardiac myosin light chain kinase (MLCK). Pfluegers Arch. 392(Suppl .): R1.CrossRefGoogle Scholar
  44. 44.
    Rüegg, J. C., Kuhn, H. J., Güth, K., Pfitzer, G., and Hofmann, F. 1984. Tension transients in skinned muscle fibres of insect flight muscle and mammalian cardiac muscle: Effect of substrate concentration and treatment with myosin light chain kinase. In: H. Suji and G. J. Pollack (eds.) Contractile Mechanisms in Muscle. pp. 605–615. Plenum Press, New York.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Franz Hofmann
    • 1
  • Manfred Zimmer
    • 1
  1. 1.Pharmakologisches InstitutUniversität HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations