Advertisement

Brain Natural Frequencies are Causal Factors for Resonances and Induced Rhythms

  • Erol Başar
Part of the Brain Dynamics book series (BD)

Abstract

The rationale of writing this epilogue is to help my own thinking about the results and discussions presented in the foregoing chapters. I do not aim to give a comprehensive account of all the chapters presented and all the ideas included in this book. Bullock has written most relevant introductory remarks, and I refer to his chapter for opening comment, chronology, and remarks about the chapters of the present volume.

Keywords

Chaotic Dynamic Correlation Dimension Strange Attractor Alpha Activity Theta Rhythm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adey WR, Dunlop CW, Hendrix CE (1960): Hippocampal slow waves: distribution and phase relations in the course of approach learning. Arch Neurol 3: 74–90CrossRefGoogle Scholar
  2. Adey WR (1989): Do EEG-like Processes Influence Brain Function at a Physiological Level? In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin-Heidelberg: Springer-Verlag, pp 362–367Google Scholar
  3. Adrian ED (1941): Afferent discharges to the cerebral cortex from peripheral sense organs. J Physiol 100:159–191Google Scholar
  4. Adrian ED (1951): Rhythmic discharges from the thalamus. J Physiol 113:9–10PGoogle Scholar
  5. Adrian ED, Yamagiwa K (1935): The origin of Berger rhythm. Brain 58: 323–351CrossRefGoogle Scholar
  6. Andersen P (1975): Organization of hippocampal neurons and their interconnections. In: The Hippocampus, vol 1, Isaacson RL, Pribam KH, eds. New York: Plenum PressGoogle Scholar
  7. Andersen P, Andersson SA (1968): Physiological Basis of the Alpha Rhythm. New York: Appleton-Century-CroftsGoogle Scholar
  8. Andersen P, Brooks C McC, Eccles JC (1964): Electrical responses of the ventro-basal nucleus of the thalamus. Prog Brain Res 5:100–113CrossRefGoogle Scholar
  9. Andersen P, Brooks CMcC, Eccles JC, Sears TA (1964): The ventro-basal nucleus of the thalamus: potential fields, synaptic transmission and excitability of both presynaptic and postsynaptic components. J Physiol 174: 348–369Google Scholar
  10. Barlow JS, Estrin T (1971): Comparative phase characteristics of induced and instrinsic alpha activity. Electroencephalogr Clin Neurophysiol 30: 1–9CrossRefGoogle Scholar
  11. Bartley SH, Bishop GH (1933): The cortical response to stimulation of the optic nerve in the rabbit. Am J Physiol 103: 159–172Google Scholar
  12. Başar E (1980): EEG Brain Dynamics. Relation between EEG and Brain Evoked Potentials. Amsterdam: ElsevierGoogle Scholar
  13. Başar E (1983a): Toward a physical approach to integrative physiology. I. Brain dynamics and physical causality. Am J Physiol 14: R510–533Google Scholar
  14. Başar E (1983b): Synergetics of Neuronal Populations. A Survey on Experiments. In: Synergetics of the Brain, Başar E, Flohr H, Haken H, Mandell AJ, eds. Berlin— Heidelberg: Springer-Verlag, pp 183–198CrossRefGoogle Scholar
  15. Başar E (1988a): EEG-Dynamics and Evoked Potentials in Sensory and Cognitive Processing by the Brain. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin-Heidelberg: Springer-Verlag, pp 30–55CrossRefGoogle Scholar
  16. Başar E (1988b): Thoughts on Brain’s Internal Codes. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin-Heidelberg: Springer-Verlag, pp 381–384CrossRefGoogle Scholar
  17. Başar E, Başar-Eroglu C, Rahn E, Schürmann M (1991): Sensory and Cognitive Components of Brain Resonance Responses: an analysis of responsiveness in human and cat brain upon visual and auditory stimulation. Acta Otolaryngol (Stockh) (in press)Google Scholar
  18. Başar E, Başar-Eroglu C, Röschke J, Schütt A (1989): The EEG is a quasi-deterministic signal anticipating sensory-cognitive tasks. In: Brain Dynamics, Başar E, Bullock TH, eds. Berlin-Heidelberg: Springer-Verlag, pp 43–71CrossRefGoogle Scholar
  19. Başar E, Gönder A, Özesmi C, Ungan P (1975a): Dynamics of brain rhythmic and evoked potentials. I. Some computational methods for the analysis of electrical signals from the brain. Biol Cybern 20:137–143CrossRefGoogle Scholar
  20. Başar E, Gönder A, Özesmi C, Ungan P (1975b): Dynamics of brain rhythmic and evoked potentials. II. Studies in the auditory pathway, reticular formation and hippocampus during the waking stage. Biol Cybern 20: 145–160CrossRefGoogle Scholar
  21. Başar E, Gönder A, Özesmi C, Ungan P (1975c): Dynamics of brain rhythmic and evoked potentials. III. Studies in the auditory pathway, reticular formation and hippocampus during sleep. Biol Cybern 20: 161–169CrossRefGoogle Scholar
  22. Başar E, Gönder A, Ungan P (1976a): Important relation between EEG and brain evoked potentials. I. Resonance phenomena in subdural structures of the cat brain. Biol Cybern 25: 27–40Google Scholar
  23. Başar E, Gönder A, Ungan P (1976b): Important relation between EEG and brain evoked potentials. II. A systems analysis of electrical signals from the human brain. Biol Cybern 25:41–48Google Scholar
  24. Başar-Eroglu C, Başar E (1991): Am Compound P300–40 Hz Response of the cat hippocampus. Int J Neurophysiol 60: 227–237Google Scholar
  25. Bennett TL, Herbert PN, Moss DE (1973): Hippocampal theta activity and the attention component of discrimination learning. Behav Biol 8:173–181CrossRefGoogle Scholar
  26. Bishop GH (1933): Cyclic changes in excitability of the optic pathway of the rabbit. Am J Physiol 103:213–224Google Scholar
  27. Bishop GH, Jeremy D, McLeod JG (1953): Phenomenon of repetitive firing in lateral geniculate of cat. J Neurophysiol 16: 437–447Google Scholar
  28. Bremer F, Bonnet V (1950): Interprétation des réactions rhythmiques prolongées des aires sensorielles de l’écorce cérébrale. EEG Clin Neurophysiol 2: 389–400CrossRefGoogle Scholar
  29. Bullock TH, McClune MC (1989): Lateral coherence of the electrocorticogram: a new measure of brain synchrony. Electroencephalogr and Clin Neurophysiol 73: 479– 498CrossRefGoogle Scholar
  30. Buzsáki G (1985): Theta rhythm: biophysical model of generation in the hippocampus. In: Electrical Activity of the Archicortex, Buzsáki G, Vanderwolf CH, eds. Budapest: Akadémiai KiadóGoogle Scholar
  31. Chang HT (1951): Dendritic potential of cortical neurons produced by direct electrical stimulation of the cerebral cortex. J Neurophysiol 14:1–21Google Scholar
  32. Cooper R, Winter AL, Crow HJ, Walter WG (1965): Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroencephalogr Clin Neurophysiol 18: 217–228CrossRefGoogle Scholar
  33. Creutzfeldt OD, Watanabe S, Lux HD (1966): Relations between EEG-phenomena and potentials of single cortical cells. I. Evoked responses after thalamic and epicortical stimulation. Electroencephalogr Clin Neurophysiol 20: 1–18CrossRefGoogle Scholar
  34. Creutzfeldt OD, Rosina A, Ito M, Probst W (1969): Visual evoked response of single cells and of EEG in primary visual area of the cat. J Neurophysiol 32: 127–139Google Scholar
  35. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988): Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol Cybern 60: 121–130CrossRefGoogle Scholar
  36. Eckhorn R, Bauer R, Reitboeck HJ (1989b): Discontinuities in visual cortex and possible functional implications: relating cortical structure and function with multielectrode/correlation techniques. In: Brain dynamics, Başar E, Bullock TH, eds. Berlin-Heidelberg: Springer-Verlag, pp 267–278CrossRefGoogle Scholar
  37. Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1989a): Feature linking via stimulus—evoked oscillations: experimental results from cat visual cortex and functional implications from a network model. IEEE and INNS on Neural Networks, Washington, June 18–22,1989Google Scholar
  38. Edelman GM (1978): Group selection and phasic re-entrant signalling: a Theory of higher brain function. In: The Mindful Brain, Edelman GM, Mountcastle VB, eds. Cambridge: MIT PressGoogle Scholar
  39. Edelman GM (1987): Neural Darwinism. The Theory of Neuronal Group Selection. New York: Basic BooksGoogle Scholar
  40. Edelman GM (1989): The Remembered Present. A Biological Theory of Consciousness. New York: Basic BooksGoogle Scholar
  41. Elazar Z, Adey WR (1967): Spectral analysis of low frequency components in the electrical activity of the hippocampus during learning. Electroencephalogr Clin Neurophysiol 23: 225–240CrossRefGoogle Scholar
  42. Elul R (1972): Randomness and synchrony in the generation of the electroencephalogram. In: Synchronization of EEG Activity in Epilepsies, Petsche H, Brazier MAB, eds. Wien–New York: Springer-VerlagGoogle Scholar
  43. Fessard A (1961): The role of neuronal networks in communication within the brain. In: Sensory Communication, Rosenblith WA, ed. Cambridge: MIT Press, pp 585– 606Google Scholar
  44. Freeman WJ (1975): Mass Action in the Nervous System. New York: Academic PressGoogle Scholar
  45. Freeman WJ (1979): Nonlinear gain mediating cortical stimulus-response relations. Biol Cybern 33: 237–247CrossRefGoogle Scholar
  46. Freeman WJ (1988). Nonlinear neural dynamics in olfaction as a model for cognition. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin Heidelberg New York: Springer-Verlag, pp 19–28CrossRefGoogle Scholar
  47. Freeman WJ (1990): Searching for signal and noise in the chaos of brain waves. In: The Ubiquity of Chaos, Knasner S, ed. American Association for the Advancement of Science, WashingtonGoogle Scholar
  48. Freeman WJ, Skarda CA (1985): Spatial EEG patterns, non-linear dynamics and perception: the neo-Sheerringtonian view. Brain Res Rev 10: 147–175CrossRefGoogle Scholar
  49. Galambos R, Makeig S (1981): Dynamic changes in steady-state responses. In: Dynamics of sensory and cognitive processing of the brain, Başar E, ed. Heidelberg: Springer-Verlag, pp 103–122Google Scholar
  50. Galambos R, Rose JE, Bromiley RB, Hughes JR (1952): Microelectrode studies on medial geniculate body of cat. II. Response to clicks . J Neurophysiol 15: 359–380Google Scholar
  51. Goldbeter A (1980): Models for oscillations and excitability in biochemical systems. Mathematical Models in Molecular and Cellular Biology, Segel LA, ed. Cambridge: Cambridge University PressGoogle Scholar
  52. Goldbeter A, Caplan SR (1976): Oscillatory enzymes. Annu Rev Biophys Bioeng 5: 449–476CrossRefGoogle Scholar
  53. Goldbeter A, Moran F (1988): Dynamics of a biochemical system with multiple oscillatory domains as a clue for multiple modes of neuronal oscillations. Eur Biophys J 15:277–287CrossRefGoogle Scholar
  54. Goldbeter A, Segal A (1980): Control of developmental transitions in the cyclic AMP signalling system of Dictyostelium discoideum. Differentiation 17: 127–135CrossRefGoogle Scholar
  55. Grastyán E, Lissak K, Madarasz I, Donhoffer H (1959): Hippocampal electrical activity during the development of conditioned reflexes. Electroencephalogr Clin Neurophysiol 11:409–430CrossRefGoogle Scholar
  56. Grastyán E, Vereczkei L (1974): Effects of spatial separation of the conditioned signal from the reinforcement: a demonstration of the conditioned character of the orienting response or the orientational character of conditioning. Behav Biol 10: 121–146CrossRefGoogle Scholar
  57. Gray CM, König P, Engel AK, Singer W (1989): Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflect global stimulus properties. Nature 338: 334–337CrossRefGoogle Scholar
  58. Gray CM, Singer W (1987): Stimulus-specific neuronal oscillations in the cat visual cortex: a cortical function unit. Soc Neurosci 404: 3Google Scholar
  59. Gray CM, Singer W (1989): Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci 86: 1698–1702CrossRefGoogle Scholar
  60. Green JD, Arduini A (1954): Hippocampal electrical activity in arousal. J Neurophysiol 17:533–557Google Scholar
  61. Haken H (1977): Synergetics. An Introduction. Berlin: SpringerGoogle Scholar
  62. Haken H (1983): Synopsis and introduction. In: Synergetics of the brain, Başar E, Flohr H, Haken H, Mandell AJ, eds. Berlin-Heidelberg: Springer-Verlag, pp 3–27CrossRefGoogle Scholar
  63. Holmes JE, Adey WR (1960): Electrical activity of the entorhinal cortex during conditioned behaviour. Am J Physiol 199: 741–744Google Scholar
  64. Horowitz JM, Freeman WJ, Stoll PJ (1973): A neural network with a background level of excitation in the cat hippocampus. I nt J Neurosci 5: 113–123Google Scholar
  65. Jahnsen H, Llinás R (1984): Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349: 229–247Google Scholar
  66. Jarcho LW (1949): Excitability of cortical afferent systems during barbiturate anesthesia. J Neurophysiol 12: 447–457Google Scholar
  67. John ER (1989): Resonating fields in the brain and the hyperneuron. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin-Heidelberg: Springer-Verlag, pp 56–87Google Scholar
  68. Jones EG, Powell TPS (1970): An anatomical study of converging sensory pathways within the cerebral cortex of the monkeys. Brain 93: 773–820Google Scholar
  69. Katchalsky AK, Rowland W, Blumenthal R (1974): Dynamics Patterns of Brain Cell Assemblies. Massachusetts: MIT PressGoogle Scholar
  70. Lansing RW, Barlow JS (1972): Rhythmic after-activity to flashes in relation to the background alpha which precedes and follows the photic stimuli. Electroencephalogr Clin Neurophysiol 32: 149–160CrossRefGoogle Scholar
  71. Llinás RR (1988): The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242: 1654–1664CrossRefGoogle Scholar
  72. Llinás RR (1990): Intrinsic electrical properties of mammalian neurons and CNS function. In: Fidia Research Foundation Neuroscience Award Lectures, vol 4. New York: Raven PressGoogle Scholar
  73. Llinás RR, Graves A (1990): Intrinsic 40-Hz oscillatory properties of layer IV neurons in guinea-pig cerebral cortex in vitro. Soc Neurosci Abstr (in press)Google Scholar
  74. Lopes da Silva FH (1987): Dynamics of EEGs as signals of neuronal populations: models and theoretical considerations. In: Electroencephalography: Basic Principles, Clinical Applications and Related Fields, Niedermeyer E, Lopes da Silva FH, ed. Baltimore—Munich: Urban and Schwarzenberg, pp 15–28Google Scholar
  75. Lopes da Silva FH, Kamphuis W, van Neerven JMAN, Pijn JPM (1990a). Cellular and Network Mechanisms in the Kindling Model of Epilepsy: The Role of GABAergic Inhibition and the Emergence of Strange Attractors. In: Machinery of the Mind, John ER, ed. Boston Basel Berlin: Birkhäuser, pp 115–139Google Scholar
  76. Lopes da Silva FH, Witter MP, Boeijinga PH, Lohman AHM (1990b): Anatomic organization and physiology of the limbic cortex. Physiol Rev 70:453–511Google Scholar
  77. Mesulam MM, Van Hoesen GW, Pandya DN, Geschwind N (1977): Limbic and sensory connections of the inferior parietal lobule (area PG) in the rhesus monkey: a study with a new method for horseradish peroxidase histochemistry. Brain Res 136: 393–414CrossRefGoogle Scholar
  78. Narici L, Pizella V, Romani GL, Torrioli G, Traversa R, Rossini PM (1990): Evoked α and µ-rhythm in humans: a neuromagnetic study. Brain Res 520: 222–231CrossRefGoogle Scholar
  79. Nogawa T, Katayama K, Tabata Y, Ohshio T, Kawahara T (1976): Changes in amplitude of the EEG induced by a photic stimulus. Electroencephalogr Clin Neurophysiol 40: 78–88CrossRefGoogle Scholar
  80. O’Keefe J, Nadel L (1978): The Hippocampus as a Cognitive Map. Oxford: Clarendon PressGoogle Scholar
  81. Pearson JC, Finkel LH, Edelman GM (1987): Plasticity in the organization of adult cortical maps: a computer model based on neuronal group selection. J Neurosci 7:4209–4223Google Scholar
  82. Petsche H, Pockeberger H, Rappelsberger P (1984): On the search for the sources of the electroencephalogram. Neuroscience 11: 1–27CrossRefGoogle Scholar
  83. Pfurtscheller G (1988): Mapping of event-related desynchronization and type of derivation. Electroencephalogr Clin Neurophysiol 70: 190–193CrossRefGoogle Scholar
  84. Prigogine I, Stengers I (1984): Order Out of Chaos. New York: BantamGoogle Scholar
  85. Ramos A, Schwartz E, John ER (1976): Evoked potential-unit relationship in behaving cats. Brain Res Bull 1: 69–75CrossRefGoogle Scholar
  86. Regan D (1966): An effect of stimulus color on average steady-state potentials evoked in man. Nature 210:1056CrossRefGoogle Scholar
  87. Rockstroh B, Elbert T, Lutzenberger W, Birbaumer N (1984): Slow Brain Potentials and Behavior. Baltimore: Urban and SchwarzenbergGoogle Scholar
  88. Röschke J, Aldenhoff J (1991): The dimensionality of human’s electro-encephalogram during sleep. Biol Cybern 64: 307–313CrossRefGoogle Scholar
  89. Röschke J, Aldenhoff JB (1991): Excitability and Susceptibility of the Brain’s Electrical Activity during Sleep: an Analysis of Late Components of AEPs and VEPs. Int J Neurosci 56: 255–272CrossRefGoogle Scholar
  90. Röschke J, Başar E (1989): Correlation dimensions in various parts of cat and human brain. In: Brain Dynamics. Progress and Perspectives, Başar E, Bullock TH, eds. Berlin-Heidelberg: Springer-Verlag, pp 131–148CrossRefGoogle Scholar
  91. Rougeul A, Bouyer JJ, Dedet L, Debray O (1979): Fast somatoparietal rhythms during combined focal attention and immobility in baboon and squirrel monkey. Electroencephalogr Clin Neurophysiol 46: 310–319CrossRefGoogle Scholar
  92. Sato K (1963): On the linear model of the brain activity in electroencephalographic potentials. Folia Psychiatr Neurol Jap 17:156–166Google Scholar
  93. Sato K, Kitajima H, Mimura K, Hirota N, Tagawa Y, Ochi N (1971): Cerebral visual evoked potentials in relation to EEG. Electroencephalogr Clin Neurophysiol 30: 123–128CrossRefGoogle Scholar
  94. Sato K, Ono K, Chiba G, Fukuta K (1977): Component activities in the autogressive activity of physiological systems. Int J Neurosci 7: 239–249CrossRefGoogle Scholar
  95. Sheer DE (1989): Sensory and cognitive 40-Hz event-related potentials: behavioral correlates, brain function, and clinical application. In: Brain Dynamics: Progress and Perspectives, Başar E, Bullock TH, eds. Heidelberg: Springer-Verlag, pp 339–374CrossRefGoogle Scholar
  96. Spekreijse H (1966): Analysis of EEG Responses in Man Evoked by Sinewave Modulated Light. The Hague: Thesis, University of Amsterdam, JunkGoogle Scholar
  97. Spekreijse H, Van der Tweel LH (1972): Systems analysis of linear and nonlinear processes in electrophysiology of the visual system. Proc Kon Ned Akad van Wetensch C75: 77–105Google Scholar
  98. Sporns O, Gally JA, Reeke GN Jr, Edelman GM (1989): Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory activity. Proc Natl Acad Sci 86: 7265–7269CrossRefGoogle Scholar
  99. Steriade M, Gloor P, Llinás RR, Lopes da Silva FH, Mesulam MM (1990a): Basic mechnisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 76: 481–508CrossRefGoogle Scholar
  100. Steriade M, Jones EG, Llinás RR (1990b): Thalamic oscillation and signaling. New York: John Wiley (The Neurosciences Institute publication series)Google Scholar
  101. Stryker MP (1989): Is grandmother an oscillation? Nature 338: 297–298CrossRefGoogle Scholar
  102. Swanson LW (1983): The Hippocampus and the Concept of the Limbic System. In: Neurobiology of the Hippocampus, Seifert W, ed. London New York Paris: Academic PressGoogle Scholar
  103. Van der Tweel LH, Spekreijse H (1969): Signal transport and rectification in the human evoked response system. Ann NY Acad Sci 156: 678–695CrossRefGoogle Scholar
  104. Van der Tweel LH, Verduyn Lunel HFE (1965): Human visual response to sinusoidally modulated light. Electroencephalogr Clin Neurophysiol 18: 587–598CrossRefGoogle Scholar
  105. Vertes RP (1982): Brain stem generation of the hippocampal EEG. Prog Neurobiol 19:159–186CrossRefGoogle Scholar
  106. Verzeano M (1973): The study of neuronal networks in the mammalian brain. In: Bioelectric Recording Techniques. Part A. Cellular Processes and Brain Potentials, Thompson RF, Patterson MM, eds. New York: Academic PressGoogle Scholar
  107. Walter WG (1964): The convergence and interaction of visual, auditory, and tactile responses in human nonspecific cortex. Ann NY Acad Sci 112: 320–361CrossRefGoogle Scholar
  108. Whishaw IQ, Vanderwolf CH (1973): Hippocampal EEG and behaviour: changes in amplitude and frequency of RSA (theta rhythm) associated with spontaneous and learned movement patterns in rats and cats. Behav Biol 8: 461–484CrossRefGoogle Scholar

References

  1. Abraham RH, Shaw CD (1983): Dynamics. The Geometry of Behaviour, vols 1–3. Santa Cruz: AerialGoogle Scholar
  2. Babloyantz A, Nicolis C, Salazar M (1985): Evidence of chaotic dynamics of brain activity during the sleep cycle . Phys Lett (A) 11: 152–156CrossRefGoogle Scholar
  3. Başar E, ed. (1980): EEG—Brain Dynamics. Relation between EEG and Brain Evoked Potentials. Amsterdam: Elsevier/North-HollandGoogle Scholar
  4. Başar E, ed. (1990): Chaos in Brain Function. Berlin-Heidelberg-New York: SpringerGoogle Scholar
  5. Bullock TH (1990): An agenda for research on chaotic dynamics. In: Chaos in Brain Function, Başar E, ed. Berlin-Heidelberg-New York: Springer, pp 31–41CrossRefGoogle Scholar
  6. Haken H, ed. (1983): Advanced synergetics. Berlin-Heidelberg-New York: SpringerGoogle Scholar

References to Tables 2 and 3

  1. Babloyantz A, Destexhe, A (1986): Low dimensional chaos in an instance of epilepsy. Proc Natl Acad Sci USA 83: 3513CrossRefGoogle Scholar
  2. Babloyantz A, Nicolis C, Salazar M (1985): Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys Lett (A) 111:152–156CrossRefGoogle Scholar
  3. Başar E, Başar-Eroglu C, Röschke J (1988): Do coherent patterns of the strange attractor EEG reflect deterministic sensory-cognitive states of the brain. In: From Chemical to Biological Organization, Markus M, Müller Sc, Nicolis G, eds. Berlin— Heidelberg-New York: Springer, pp 297–306CrossRefGoogle Scholar
  4. Başar E, Başar-Eroglu C, Röschke J, Schult J (1989b): Chaos- and alpha-preparation in brain function. In: Models of Brain Function, Cotteril R, ed. Cambridge University Press, pp 365–395Google Scholar
  5. Başar E, Başar-Eroglu C, Röschke J, Schult J (1990): Strange attractor EEG as sign of cognitive function. In: Machinery of the Mind, John ER, Harmony T, Prichep L, Valdes-Sosa A, Valdes- Sosa P, eds. Boston: Birkhäuser, pp 91–114Google Scholar
  6. Dvorak I, Siska J (1986): On some problems encountered in the estimation of the correlation dimension of the EEG. Phys Lett A 118: 63–66CrossRefGoogle Scholar
  7. Hooper J (1983): What lurks behind the wild forces of nature? Ask the connoisseurs of chaos. Omni 5: 85–92Google Scholar
  8. Layne SP, Mayer-Kress G, Holzfuss J (1986): Problems associated with dimensional analysis of electroencephalogram data. In: Dimensions and Entropies in Chaotic Systems, Mayer-Kress G, ed. Berlin-Heidelberg-New York: Springer, p 246CrossRefGoogle Scholar
  9. Lopes da Silva FH, Kamphuis W, van Neerven JMAM, Pijn JPM (1990): Cellular and network mechanisms in the kindling model of epilepsy: the role of GABAergic inhibition and the emerge of strange attractors. In: Machinery of the Mind, John ER, Harmony T, Prichep L, Valdes-Sosa M, Valdes-Sosa P, eds. Boston: Birkhäuser, pp 115–139Google Scholar
  10. Rapp PE, Albano AM, Guzman GC, Greenbaum NN, Bashore TR (1986): In: Nonlinear Oscillations in biology and chemistry, Othmer HG, ed. Berlin-Heidelberg— New York: Springer, p 175 (Lecture Notes in Biomathematics, vol 66)CrossRefGoogle Scholar
  11. Röschke J, Başar E (1985): Is EEG a simple noise or a “strange attractor”? Pflügers Arch 405: R45Google Scholar
  12. Röschke J, Başar E (1988): The EEG is not a simple noise: strange attractors in intracranial structures. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin-Heidelberg-New York: Springer, pp 203–216CrossRefGoogle Scholar
  13. Röschke J. Başar E (1989): Correlation dimensions in various parts of cat and human brain in different states. In: Brain Dynamics, Başar E, Bullock TH, eds. Berlin— Heidelberg-New York: Springer, pp 131–148CrossRefGoogle Scholar
  14. Saermark K, Lebech J, Bak CK, Sabers A (1989): Magnetoencephalography and attractor dimension: normal subjects and epileptic patients. In: Brain Dynamics, Başar E, Bullock TH, eds. Berlin-Heidelberg-New York: Springer, pp 149–157CrossRefGoogle Scholar
  15. Schuster HG (1988): Deterministic Chaos. Weinheim: VCHGoogle Scholar
  16. Skinner JE, Martin JL, Landisman CE, Mommer MM, Fulton K, Mitra M, Burton WD, Saltzberg B (1989): Chaotic attractors in a model of neocortex: dimensionalitites of olfactory bulb surface potentials are spatially uniform and event related. In: Brain Dynamics, Başar E, Bullock TH, eds. Berlin-Heidelberg-New York: Springer, pp 158–173CrossRefGoogle Scholar
  17. Van Erp MG (1988): On Epilepsy: Investigations on the Level of the Nerve Membrane and of the Brain. Leiden: Proefschrift RijksuniversiteitGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Erol Başar

There are no affiliations available

Personalised recommendations