Network Properties of the Thalamic Clock: Role of Oscillatory Behavior in Mood Disorders

  • György Buzsáki
Part of the Brain Dynamics book series (BD)


Rhythmic oscillations of neuronal populations are present at several levels of the central nervous system. Rhythmicity can occur in the central nervous system because some neurons have ionic conductances organized to endow them with autorhythmicity and because these “pacemaker” neurons are in connections with ensembles of neurons that respond preferentially to inputs at certain frequencies (cf. Llinás, 1988). Alternatively, rhythmic patterns may occur as an emergent property of network activity of neurons, none of which is capable of maintaining oscillatory behavior in isolation (Andersen and Andersson, 1968; Traub et al., 1989).


Mood Disorder Sleep Spindle Thalamic Neuron Thalamocortical Neuron Population Burst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian GK, Vandermaelen CP (1982): Alpha2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science 215: 1394–1396CrossRefGoogle Scholar
  2. Akasu T, Gallagher JP, Nakamura T, Shinnick-Gallagher P, Yoshimura M (1985): Noradrenaline hyperpolarization and depolarization in cat vesical parasympathetic neurones. J Physiol 361 : 165–184Google Scholar
  3. Anderson P, Anderson SA (1968): Physiological basis of the Alpha Rhythm. New York: Appleton-Century Crofts.Google Scholar
  4. Asnis G (1977): Parkinson’s disease, depression and ECT: a critical review and case study. Am J Psychiatry 134:191–195Google Scholar
  5. Aston-Jones G, Bloom FE (1981): Activity of norepi-nephrine-containing neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1: 876— 886Google Scholar
  6. Buzsáki G (1991): The thalamic clock: emergent network properties. Neuroscience 41: 351–364CrossRefGoogle Scholar
  7. Buzsáki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988a): Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8 : 4007–4026Google Scholar
  8. Buzsáki G, Bickford RG, Armstrong DM, Ponomareff G, Chen KS, Ruiz R, Thal LJ, Gage FH (1988b): Electrical activity in the neocortex of freely moving young and aged rats. Neuroscience 26 : 735–744CrossRefGoogle Scholar
  9. Buzsáki G, Kennedy B, Solt VB, Ziegler M (1991): Noradrenergic control of thalamic oscillation: the role of alpha-2 receptors. Eur J Neurosci 3: 222–229CrossRefGoogle Scholar
  10. Buzsáki G, Laszlovszky I, Lajtha A, Vadasz C (1990): Spike-and-wave neocortical patterns in rats: genetic and aminergic control. Neuroscience 38 : 323–333CrossRefGoogle Scholar
  11. Buzsáki G, Smith A, Berger S, Fisher LJ, Gage FH (1989): Parkinsonian tremor and petit mal epilepsy: hypothesis of a common pacemaker. Neuroscience 36 : 1–14CrossRefGoogle Scholar
  12. Celesia GG, Wanamake WM (1972): Psychiatric disturbances in Parkinson’s disease. Dis Nerv Syst 33 : 577–583Google Scholar
  13. Collingridge GL, Kehl SJ, McLennan H (1983): Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334 : 33–46Google Scholar
  14. Douyon R, Serby M, Klutscho B, Rotrosen J (1989): ECT and Parkinson’s disease revisited: a “naturalistic” study. Am J Psychiat146 :1451–1455Google Scholar
  15. Gillin JC (1983): The sleep therapies of depression (1983) Prog Neuro-Psychopharmacol and Biol Psychiat 7: 351–364CrossRefGoogle Scholar
  16. Gillin JC, Borbély AA (1985): Sleep: a neurobiological window on affective disorders. Trends Neurosci 8 : 537–539CrossRefGoogle Scholar
  17. Gloor P, Fariello RG (1988): Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends Neurosci 11: 63–68CrossRefGoogle Scholar
  18. Itil TM, Soldatos C (1980): Epileptogenic side effects of psychotropic drugs. JAMA 244 : 1460–1463Google Scholar
  19. Jahnsen J, Llinás R (1984a): Electrophysiological properties of guinea pig thalamic neurones: an in vitro study. J Physiol 349 : 205–226Google Scholar
  20. Jahnsen J, Llinás R (1984b): Ionic basis for the electroresponsiveness and oscillatory properties of guinea pig thalamic neurones in vitro. J Physiol 349 : 227–247Google Scholar
  21. Llinás RR (1988): The intrinsic electrophysiological properties of mammalian neurons: insight into central nervous system function. Science 242 : 1654–1664CrossRefGoogle Scholar
  22. McCormick DA, Prince DA (1986): Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance. Nature 319: 402–405CrossRefGoogle Scholar
  23. McCormick DA (1989): Cholinergic and noradrenergic modulation of thalomocortical processing. Trends Neurosci. 12 : 215–221CrossRefGoogle Scholar
  24. McCormick DA, Prince DA (1988): Noradrenergic modulation of firing pattern in guinea pig and cat thalamic neurons, in vitro. J Neurophysiol 59 : 978–996Google Scholar
  25. Micheletti G, Warter J-M, Marescaux C, Depaulis A, Tranchant C, Rumbach L, Vergnes M (1987): Effects of drugs affecting noradrenergic neurotransmission in rats with spontaneous petit mal-like seizures. Eur J Pharmacol 135 : 397–402CrossRefGoogle Scholar
  26. Monaghan DT, Cotman CW (1985): Distribution of N-methyl-D-aspartate-sensitive L[3H] glutamate binding sites in rat brain. J Neurosci 5: 2909–2919Google Scholar
  27. Moruzzi G, Magoun HW (1949): Brain stem reticular formation and activation of EEG. Electroencephalogr Clin Neurophysiol 1: 455–473Google Scholar
  28. Riekkinen P, Buzsaki G, Riekkineni P, Jr, Soininen H, Partanen J (1990): The cholinergic system and EEG slow waves. Electroencephalogr Clin Neurophysiol (in press)Google Scholar
  29. Roger J, Grangeon H, Grey J (1968): Incidences psychiatriques et psychologiques du traitement par l’ethosuximide chez les epileptiques. Encephale 57 : 407–438Google Scholar
  30. Roy-Byrne PP, Uhde TW, Post RM (1984): Antidepressant effects of one night’s sleep deprivation: Clinical and theoretical implications. In: Post R, Ballenger J, eds. Neurobiology of Mood Disorders. Baltimore: Williams and Wilkins, pp 817–835Google Scholar
  31. Shosaku A, Kayama Y, Sumimoto I, Sugitani M, Iwama K (1989): Analysis of recurrent inhibitory circuit in rat thalamus: neurophysiology of the thalamic reticular nucleus. Prog Neurobiol 32 : 77–102CrossRefGoogle Scholar
  32. Simpson GM, Pi EH, Sramek JJ (1981): Adverse effects of antipsychotic drugs. Drugs 21:138–151CrossRefGoogle Scholar
  33. Steriade M, Buzsaki G (1990): Parallel activation of the thalamus and neocortex. In: Brain cholinergic systems, Steriade M, Biesold D, eds. Oxford: Oxford University PressGoogle Scholar
  34. Steriade M, Deschenes M (1984): The thalamus as a neuronal oscillator. Brain Res Rev 8:1–63CrossRefGoogle Scholar
  35. Steriade M, Deschenes M, Domich L, Mulle C (1985): Abolition of spindle oscillation in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol 54:1473–1497Google Scholar
  36. Steriade M, Domich L, Oakson G, Deschenes M (1987): The deafferented reticular thalamic nucleus generates spindle rhythmicity. J. Neurophysiol 57 : 260–273Google Scholar
  37. Steriade M, Llinás RR (1988): The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68 : 649–741Google Scholar
  38. Traub RD, Miles R, Wong RKS (1989): Model of rhythmic population oscillation in the hippocampal slice. Science 243 : 1319–1325CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • György Buzsáki

There are no affiliations available

Personalised recommendations