Skip to main content

Network Properties of the Thalamic Clock: Role of Oscillatory Behavior in Mood Disorders

  • Chapter
Induced Rhythms in the Brain

Part of the book series: Brain Dynamics ((BD))

Abstract

Rhythmic oscillations of neuronal populations are present at several levels of the central nervous system. Rhythmicity can occur in the central nervous system because some neurons have ionic conductances organized to endow them with autorhythmicity and because these “pacemaker” neurons are in connections with ensembles of neurons that respond preferentially to inputs at certain frequencies (cf. Llinás, 1988). Alternatively, rhythmic patterns may occur as an emergent property of network activity of neurons, none of which is capable of maintaining oscillatory behavior in isolation (Andersen and Andersson, 1968; Traub et al., 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian GK, Vandermaelen CP (1982): Alpha2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science 215: 1394–1396

    Article  Google Scholar 

  • Akasu T, Gallagher JP, Nakamura T, Shinnick-Gallagher P, Yoshimura M (1985): Noradrenaline hyperpolarization and depolarization in cat vesical parasympathetic neurones. J Physiol 361 : 165–184

    Google Scholar 

  • Anderson P, Anderson SA (1968): Physiological basis of the Alpha Rhythm. New York: Appleton-Century Crofts.

    Google Scholar 

  • Asnis G (1977): Parkinson’s disease, depression and ECT: a critical review and case study. Am J Psychiatry 134:191–195

    Google Scholar 

  • Aston-Jones G, Bloom FE (1981): Activity of norepi-nephrine-containing neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1: 876— 886

    Google Scholar 

  • Buzsáki G (1991): The thalamic clock: emergent network properties. Neuroscience 41: 351–364

    Article  Google Scholar 

  • Buzsáki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH (1988a): Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 8 : 4007–4026

    Google Scholar 

  • Buzsáki G, Bickford RG, Armstrong DM, Ponomareff G, Chen KS, Ruiz R, Thal LJ, Gage FH (1988b): Electrical activity in the neocortex of freely moving young and aged rats. Neuroscience 26 : 735–744

    Article  Google Scholar 

  • Buzsáki G, Kennedy B, Solt VB, Ziegler M (1991): Noradrenergic control of thalamic oscillation: the role of alpha-2 receptors. Eur J Neurosci 3: 222–229

    Article  Google Scholar 

  • Buzsáki G, Laszlovszky I, Lajtha A, Vadasz C (1990): Spike-and-wave neocortical patterns in rats: genetic and aminergic control. Neuroscience 38 : 323–333

    Article  Google Scholar 

  • Buzsáki G, Smith A, Berger S, Fisher LJ, Gage FH (1989): Parkinsonian tremor and petit mal epilepsy: hypothesis of a common pacemaker. Neuroscience 36 : 1–14

    Article  Google Scholar 

  • Celesia GG, Wanamake WM (1972): Psychiatric disturbances in Parkinson’s disease. Dis Nerv Syst 33 : 577–583

    Google Scholar 

  • Collingridge GL, Kehl SJ, McLennan H (1983): Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334 : 33–46

    Google Scholar 

  • Douyon R, Serby M, Klutscho B, Rotrosen J (1989): ECT and Parkinson’s disease revisited: a “naturalistic” study. Am J Psychiat146 :1451–1455

    Google Scholar 

  • Gillin JC (1983): The sleep therapies of depression (1983) Prog Neuro-Psychopharmacol and Biol Psychiat 7: 351–364

    Article  Google Scholar 

  • Gillin JC, Borbély AA (1985): Sleep: a neurobiological window on affective disorders. Trends Neurosci 8 : 537–539

    Article  Google Scholar 

  • Gloor P, Fariello RG (1988): Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends Neurosci 11: 63–68

    Article  Google Scholar 

  • Itil TM, Soldatos C (1980): Epileptogenic side effects of psychotropic drugs. JAMA 244 : 1460–1463

    Google Scholar 

  • Jahnsen J, Llinás R (1984a): Electrophysiological properties of guinea pig thalamic neurones: an in vitro study. J Physiol 349 : 205–226

    Google Scholar 

  • Jahnsen J, Llinás R (1984b): Ionic basis for the electroresponsiveness and oscillatory properties of guinea pig thalamic neurones in vitro. J Physiol 349 : 227–247

    Google Scholar 

  • Llinás RR (1988): The intrinsic electrophysiological properties of mammalian neurons: insight into central nervous system function. Science 242 : 1654–1664

    Article  Google Scholar 

  • McCormick DA, Prince DA (1986): Acetylcholine induces burst firing in thalamic reticular neurones by activating a potassium conductance. Nature 319: 402–405

    Article  Google Scholar 

  • McCormick DA (1989): Cholinergic and noradrenergic modulation of thalomocortical processing. Trends Neurosci. 12 : 215–221

    Article  Google Scholar 

  • McCormick DA, Prince DA (1988): Noradrenergic modulation of firing pattern in guinea pig and cat thalamic neurons, in vitro. J Neurophysiol 59 : 978–996

    Google Scholar 

  • Micheletti G, Warter J-M, Marescaux C, Depaulis A, Tranchant C, Rumbach L, Vergnes M (1987): Effects of drugs affecting noradrenergic neurotransmission in rats with spontaneous petit mal-like seizures. Eur J Pharmacol 135 : 397–402

    Article  Google Scholar 

  • Monaghan DT, Cotman CW (1985): Distribution of N-methyl-D-aspartate-sensitive L[3H] glutamate binding sites in rat brain. J Neurosci 5: 2909–2919

    Google Scholar 

  • Moruzzi G, Magoun HW (1949): Brain stem reticular formation and activation of EEG. Electroencephalogr Clin Neurophysiol 1: 455–473

    Google Scholar 

  • Riekkinen P, Buzsaki G, Riekkineni P, Jr, Soininen H, Partanen J (1990): The cholinergic system and EEG slow waves. Electroencephalogr Clin Neurophysiol (in press)

    Google Scholar 

  • Roger J, Grangeon H, Grey J (1968): Incidences psychiatriques et psychologiques du traitement par l’ethosuximide chez les epileptiques. Encephale 57 : 407–438

    Google Scholar 

  • Roy-Byrne PP, Uhde TW, Post RM (1984): Antidepressant effects of one night’s sleep deprivation: Clinical and theoretical implications. In: Post R, Ballenger J, eds. Neurobiology of Mood Disorders. Baltimore: Williams and Wilkins, pp 817–835

    Google Scholar 

  • Shosaku A, Kayama Y, Sumimoto I, Sugitani M, Iwama K (1989): Analysis of recurrent inhibitory circuit in rat thalamus: neurophysiology of the thalamic reticular nucleus. Prog Neurobiol 32 : 77–102

    Article  Google Scholar 

  • Simpson GM, Pi EH, Sramek JJ (1981): Adverse effects of antipsychotic drugs. Drugs 21:138–151

    Article  Google Scholar 

  • Steriade M, Buzsaki G (1990): Parallel activation of the thalamus and neocortex. In: Brain cholinergic systems, Steriade M, Biesold D, eds. Oxford: Oxford University Press

    Google Scholar 

  • Steriade M, Deschenes M (1984): The thalamus as a neuronal oscillator. Brain Res Rev 8:1–63

    Article  Google Scholar 

  • Steriade M, Deschenes M, Domich L, Mulle C (1985): Abolition of spindle oscillation in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol 54:1473–1497

    Google Scholar 

  • Steriade M, Domich L, Oakson G, Deschenes M (1987): The deafferented reticular thalamic nucleus generates spindle rhythmicity. J. Neurophysiol 57 : 260–273

    Google Scholar 

  • Steriade M, Llinás RR (1988): The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68 : 649–741

    Google Scholar 

  • Traub RD, Miles R, Wong RKS (1989): Model of rhythmic population oscillation in the hippocampal slice. Science 243 : 1319–1325

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Buzsáki, G. (1992). Network Properties of the Thalamic Clock: Role of Oscillatory Behavior in Mood Disorders. In: Başar, E., Bullock, T.H. (eds) Induced Rhythms in the Brain. Brain Dynamics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-1281-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1281-0_13

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4757-1283-4

  • Online ISBN: 978-1-4757-1281-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics