Introduction to Induced Rhythms: A Widespread, Heterogeneous Class of Oscillations

  • Theodore H. Bullock
Part of the Brain Dynamics book series (BD)


Adrian (1950) introduced the term “induced waves” for oscillations caused by odor stimuli in the olfactory bulb of cats, rabbits, and hedgehogs, distinguishing these events from intrinsic, spontaneous waves. Recent findings on the coherence of oscillations among and between small sets of neurons in the visual cortex, upon stimulation with moving stripes or gratings, have attracted wide notice (see chapters in this volume by Gray et al. and Eckhorn et al.). Particularly intriguing is the coherence between widely separated sets when stimulated by one long bar and its absence when the bar is separated into two, moving in the same direction and orientation out of phase. Our attention having thus been called to the class of responses that includes a rhythm not present in the stimulus, the question arises where else such phenomena have been seen and whether they reflect a common mechanism or a common role in the brain. The aim of this chapter is to survey previous information as background for the rest of the book, which brings together the new information.


Visual Cortex Olfactory Bulb Gamma Band Electric Fish Neuronal Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdullaev GB, Gadzhieva NA, Rzaeva NM, Alekperova SA, Kambarli EI, Dimitrenko AI, Gasanova SA (1977): Oscillatory potentials in the structures of visual system. Fiziol Zh SSSR 12: 1653–1661Google Scholar
  2. Abraham RH, Shaw CD (1982): Dynamics—The Geometry of Behavior. Santa Cruz: Aerial PressGoogle Scholar
  3. Adrian ED (1942): Olfactory reactions in the brain of the hedgehog. J Physiol 100 : 459–473Google Scholar
  4. Adrian ED (1950): The electrical activity of the mammalian olfactory bulb. Electroencephalogr Clin Neurophysiol 2: 377–387Google Scholar
  5. Adrian ED, Matthews R (1928): The action of light on the eye. Part III. The interaction of retinal neurones. J Physiol 65:273–298Google Scholar
  6. Ahissar E, Vaadia E (1990): Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis. Proc Natl Acad Sci USA 87: 8935–8939.Google Scholar
  7. Altman JS, Kien J (1989): New models for motor control. Neural Computation 1:173–183Google Scholar
  8. Altschuler E, Garfinkel A, Segundo JP, Stiber M, Wang GH (1990): Pacemaker neurons: periodic and aperiodic responses to periodic PSPs. Biophys J 57:193aGoogle Scholar
  9. Arshavsky YuI, Deliagina TG, Meizerov ES, Orlovsky GN, Panchin Yuv (1988a): Control of feeding movements in the freshwater snail Planorbis corneus. I. Rhythmical neurons of buccal ganglia. Exp Brain Res 70: 310–322Google Scholar
  10. Arshavsky YuI, Deliagina TG, Orlovsky GN, Panchin Yuv (1988b): Control of feeding movements in the freshwater snail Planorbis corneus. III. Organization of the feeding rhythm generator. Exp Brain Res 70: 332–341Google Scholar
  11. Arvanitaki A (1938): Les variations graduées de la polarisation des systèmes excitables. Thesis, Univ. Lyons, Paris: Hermann et cieGoogle Scholar
  12. Arvanitaki A (1939a): Recherche sur la réponse oscillatoire locale de l’axone géant isolé de Sepia. Arch Int Physiol 49: 209–256Google Scholar
  13. Arvanitaki A (1939b): Contributions à l’étude analytique de la réponse électrique oscillatoire locale de l’axone isolé de Sepia. C R Soc Biol (Paris) 131:1117–1120Google Scholar
  14. Arvanitaki A, Cardot H (1941): Réponses rhytmiques ganglionnaires, graduées en fonction de la polarisation appliquée. Lois des latences et des fréquences. C R Soc Biol (Paris)135: 1211–1216Google Scholar
  15. Arvanitaki A, Chalazonitis N (1955): Les potentiels bioélectriques endocytaires du neurone géant d’Aplysia en activité autorhytmique. C R Acad Sci (Paris) 240: 349–351Google Scholar
  16. Arvanitaki A, Chalazonitis N (1961): Excitatory and inhibitory processes initiated by light and infrared radiations in single identifiable nerve cells (giant ganglion cells of Aplysia). In: Nervous Inhibition, Florey E, ed. Oxford: Pergamon Press.Google Scholar
  17. Arvanitaki A, Fessard A, Kruta V (1936): Mode répétitif de la réponse électrique des nerfs visceraux et étoilés chez Sepia officinalis. C R Soc Biol (Paris) 122: 1203–1204Google Scholar
  18. Ayers JL Jr, Selverston AI (1979): Monosynaptic entrainment of an endogenous pacemaker network: a cellular mechanism for von Holst’s magnet effect. J Comp Physiol 129:5–17Google Scholar
  19. Barrio LC, Buño W (1990a): Dynamic analysis of sensory-inhibitory interactions in crayfish stretch receptor neurons. J Neurophysiol 63:1508–1519Google Scholar
  20. Barrio LC, Buño W (1990b): Temporal correlations in sensory-synaptic interactions: example in crayfish stretch receptors. J Neurophysiol 63: 1520–1527Google Scholar
  21. Bartley SH, Bishop GH (1933): The cortical response to stimulation of the optic nerve in the rabbit. Am J Physiol 103: 159–172Google Scholar
  22. Başar E (1980): EEG—Brain Dynamics. Amsterdam: ElsevierGoogle Scholar
  23. Başar E (1983a): Toward a physical approach to integrative physiology. I. Brain dynamics and physical causality. Am J Physiol 245: R510—R533Google Scholar
  24. Başar E (1983b): EEG and synergetics of neural populations. In: Synergetics of the Brain, Başar E, Flohr H, Haken H, Mandell AJ, eds. Berlin: Springer-Verlag, pp 183–200Google Scholar
  25. Başar E (1988): EEG-dynamics and evoked potentials in sensory and cognitive processing by the brain. In: Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin : Springer-Verlag, pp 30–55Google Scholar
  26. Başar E, Bullock TH (1989): Brain Dynamics: Progress and Perspectives. Berlin: Springer-VerlagGoogle Scholar
  27. Başar E, Flohr H, Haken H, Mandell AJ (1983): Synergetics of the Brain. Berlin: Springer-VerlagGoogle Scholar
  28. Bernhard CG (1942): Isolation of retinal and optic ganglion response in the eye of Dytiscus. J Neurophysiol 5: 32Google Scholar
  29. Bishop GH (1933): Cyclic changes in excitability of the optic pathway of the rabbit. Am J Physiol 103:213–224Google Scholar
  30. Bishop GH (1935): Electrical responses accompanying activity of the optic pathway. Arch Ophthamol 14: 992–1019Google Scholar
  31. Bishop GH, Clare MH (1952): Relations between specifically evoked and “spontaneous” activity of optic cortex. Electroencephalogr Clin Neurophysiol 4: 321–330Google Scholar
  32. Bishop GH, O’Leary J (1936): Components of the electrical response of the optic cortex of the rabbit. Am J Physiol 117: 292–308Google Scholar
  33. Bishop GH, O’Leary J (1938): Potential records from the optic cortex of the cat. J Neuro ph ysiol I: 391–404Google Scholar
  34. Bishop PO, Jeremy D, McLeod JG (1953): Phenomenon of repetitive firing in lateral geniculate of cat. J Neurophysiol 16:437–447Google Scholar
  35. Boeijinga PH, Lopes da Silva FH (1989a): A new method to estimate time delays between EEG signals applied to beta activity of the olfactory cortical areas. Electroencephalogr Clin Neurophysiol 73: 198–205Google Scholar
  36. Boeijinga PH, Lopes da Silva FH (1989b): Modulations of EEG activity in the entorhinal cortex and forebrain olfactory areas during odour sampling. Brain Res 478: 257–268Google Scholar
  37. Brazier MAB (1960): Long-persisting electrical traces in the brain of man and their possible relationship to higher nervous activity. In: The Moscow Colloquium on Electroencephalography of Higher Nervous Activity, Jasper HH, Smirnov GD, eds. Montreal: The EEG Journal, pp 347–358Google Scholar
  38. Bremer F (1941): La synchronisation neuronique. Sa signification physiopathologique et son mécanisme. Schweiz Med Wochenschr 12 : 570Google Scholar
  39. Bremer F (1944): L’activité “spontanée” des centres nerveux. Bull Acad R Med Belg 9:148–173Google Scholar
  40. Bremer F (1949): Considérations sur l’origine et la nature des “ondes” cérébrales. Electroencephalogr Clin Neurophysiol 1:177–193Google Scholar
  41. Bremer F (1953): Some Problems in Neurophysiology. London: London University PressGoogle Scholar
  42. Bremer F (1958): Cerebral and cerebellar potentials. Physiol Rev 38: 357–388Google Scholar
  43. Bremer F, Titeca I (1940): L’activité electrique de l’écorce cérébrale. In: T raité de Physiologie normale et pathologique, Tome XII. Paris: MassonGoogle Scholar
  44. Bressler SL (1990): The gamma wave: a cortical information carrier? Trends Neurosci 13:161–162Google Scholar
  45. Bullock TH (1945): Problems in the comparative study of brain waves. Yale J Biol Med 17: 657–679Google Scholar
  46. Bullock TH (1956): The trigger concept in biology. In: Physiological Triggers and Discontinuous Rate Processes, Bullock TH, ed. London: American Physiological Society, pp 1–8Google Scholar
  47. Bullock TH (1961): The origins of patterned nervous discharge. Behaviour17:48–59Google Scholar
  48. Bullock TH (1962): Integration and rhythmicity in neural systems. Am Zool 2: 97–104Google Scholar
  49. Bullock TH (1965): Mechanisms of integration. In: Structure and Function in the Nervous Systems of Invertebrates, New York: WH Freeman and Co, pp 253–351Google Scholar
  50. Bullock TH (1989): The micro-EEG represents varied degrees of cooperativity among wide-band generators: spatial and temporal microstructure of field potentials. In: Brain Dynamics: Progress and Perspectives, Başar E, Bullock TH, eds. Berlin: Springer-Verlag, pp 5–12Google Scholar
  51. Bullock TH, Hofmann MH (1991): The neurobiology of expectation: interval-specific event related potentials to omitted stimuli in the electrosensory pathway in elasmobranchs (unpublished data)Google Scholar
  52. Bullock TH, McClune MC (1989): Lateral coherence of the electrocorticogram: a new measure of brain synchrony. Electroencephalogr Clin Neurophysiol 73: 479–498Google Scholar
  53. Bullock TH, Hofmann MH, Nahm FK, New JG, Prechtl JC (1990a): Event-related potentials in the retina and optic tectum of fish. J Neurophysiol 64: 903–914Google Scholar
  54. Bullock TH, Iragui VJ, Alksne JF (1990b): Electrocorticogram coherence and correlation of amplitude modulation between electrodes both decline in millimeters in human as well as in rabbit brains. Soc Neurosci Abstr 16: 1241Google Scholar
  55. Bullock TH, Hofmann MH, New JG, Nahm FK (1991): Dynamic properties of visual evoked potentials in the tectum of cartilaginous and bony fishes, with neuroethological implications. J Exp Zool Suppl5:142–155Google Scholar
  56. Chang H-t (1950): The repetitive discharges of corticothalamic reverberating circuit. J Neurophysiol 13: 235–257Google Scholar
  57. Chatrian GE, Bickford RG, Uihlein A (1960): Depth electrographic study of a fast rhythm evoked from the human calcarine region by steady illumination. Electroencephalogr Clin Neurophysiol 12: 167–176Google Scholar
  58. Clare MH, Bishop GH (1956): Potential wave mechanisms in cat cortex. Electroencephalogr Clin Neurophysiol 8: 583–602Google Scholar
  59. Cole LC (1957): Biological clock in the unicorn. Science 125: 874–876Google Scholar
  60. Crescitelli F, Jahn TL (1942): Oscillatory electrical activity from the insect compound eye. J Cell Comp Physiol 19: 47–66Google Scholar
  61. Dinse HR, Krüger K, Best J (1991): Temporal aspects of cortical information processing cortical architecture, oscillations and non-separability of spatio-temporal receptive field organization. In: Neuronal Cooperativity-Models and Experiments, Kruger J, ed. Freiburg: Springer-Verlag (in press)Google Scholar
  62. Doty RW, Kimura DS (1963): Oscillatory potentials in the visual system of cats and monkeys. J Physiol 168: 205–218Google Scholar
  63. Ducati A, Fava E, Motti EDF (1988): Neuronal generators of the visual evoked potentials: intracerebral recording in awake humans. Electroencephalogr Clin Neurophysiol71: 89–99Google Scholar
  64. Eckhorn R, Reitboeck HJ (1988): Assessment of cooperative firing in groups of neurons: special concepts for multiunit recordings from the visual system. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin: Springer-Verlag, pp 219–227Google Scholar
  65. Eckhorn R, Bauer R, Brosch M, Jordan W, Kruse W, Munk M (1988a): Functionally related modules of cat visual cortex show stimulus-evoked coherent oscillations: a multiple electrode study. Invest Ophthalmol Vis Sci 29: 331Google Scholar
  66. Eckhorn R, Bauer R, Brosch M, Jordan W, Kruse W, Munk M, Reitboeck HJ (1988b): Are form- and motion-aspects linked in visual cortex by stimulus-evoked resonances? In: Workshop: Visual Processing of Form and Motion, Vol. P7. Tubingen, West Germany: European Brain and Behavior SocietyGoogle Scholar
  67. Eckhorn R, Bauer R, Reitboeck HJ (1989a): Discontinuities in visual cortex and possible functional implications: relating cortical structure and function with multielectrode/correlation techniques. In: Brain Dynamics: Progress and Perspectives, Başar E, Bullock TH, eds. Berlin: Springer-Verlag, pp 267–278Google Scholar
  68. Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1989b): Feature linking via stimulus— evoked oscillations: experimental results from cat visual cortex and functional implications from a network model. In: Neural Networks, Abstr. Vol., Conference on Neural Networks, Washington 1989 Google Scholar
  69. Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1990): Feature linking via synchroniza- tion among distributed assemblies: simulations of results from cat visual cortex. Neural Computation 2: 293–307Google Scholar
  70. Eeckman FH, Freeman WJ (1990): Correlations between unit firing and EEG in the rat olfactory system. Brain Res 528: 238–244Google Scholar
  71. Engel AK, König P, Gray CM, Singer W (1990): Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by crosscorrelation analysis. Eur J Neurosci 20: 588–606Google Scholar
  72. Engel AK, König P, Kreiter AK, Gray CM, Singer W (1991): Temporal coding by coherent oscillations as a potential solution to the binding problem: physiological evidence. In Nonlinear Dynamics and Neuronal Networks, Schuster HG, ed. Weinheim: VCH Verlagsgesellschaft, pp 3–25Google Scholar
  73. Enright JT (1965): The search for rhythmicity in biological time series. J Theor Biol 8 : 426–468Google Scholar
  74. Enright JT (1989): The parallactic view, statistical testing, and circular reasoning. J Biol Rhythms 4 : 295–304Google Scholar
  75. Erxleben C (1989): Stretch-activated current through single ion channels in the abdominal stretch receptor organ of the crayfish. J Gen Physiol 94: 1071–1083Google Scholar
  76. Freeman WJ (1968): Relations between unit activity and evoked potentials in prepyriform cortex of cats. J Neurophysiol 31: 337–348Google Scholar
  77. Freeman WJ (1972): Measurement of oscillatory responses to electrical stimulation in olfactory bulb of cat. J Neurophysiol 35: 762–779Google Scholar
  78. Freeman WJ (1975): Mass Action in the Nervous System. New York: Academic PressGoogle Scholar
  79. Freeman WJ (1978): Spatial properties of an EEG event in the olfactory bulb1 and cortex. Electroencephalogr Clin Neurophysiol 44: 586–605Google Scholar
  80. Freeman WJ (1979a): Nonlinear gain mediating cortical stimulus-response relations. Biol Cybern 33: 237–247Google Scholar
  81. Freeman WJ (1979b): Nonlinear dynamics of paleocortex manifested in the olfactory EEG. Biol Cybern 35: 21–37Google Scholar
  82. Freeman WJ (1979c): EEG analysis gives model of neuronal template-matching mechanism for sensory search with olfactory bulb. Biol Cybern 35: 221–234Google Scholar
  83. Freeman WJ (1981): A physiological hypothesis of perception. Perspect Biol Med 561–592Google Scholar
  84. Freeman WJ (1985): Techniques used in the search for the physiological basis for the EEG. In : Handbook of Electroencephalography and Clinical Neurophysiology, Vol. 3A, Part 2. Gevins A, Remond A, eds. Amsterdam: Elsevier.Google Scholar
  85. Freeman WJ (1987): Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybern 56: 139–150Google Scholar
  86. Freeman WJ (1988): A watershed in the study of nonlinear neural dynamics. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Heidelberg: Springer-Verlag, pp 378–380Google Scholar
  87. Freeman WJ, Schneider W (1982): Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. Psychophysiology 19: 44–56Google Scholar
  88. Freeman WJ, Skarda CA (1985): Spatial EEG patterns, non-linear dynamics and perception: the neo- Sherringtonian view. Brain Res Rev 10: 147–175Google Scholar
  89. Freeman WJ, van Dijk BW (1987): Spatial patterns of visual cortical fast EEG during conditioned reflex in a rhesus monkey. Brain Res 422: 267–276Google Scholar
  90. Friedlander MJ (1983): The visual prosencephalon of teleosts. In: Fish Neurobiology, Vol. 2: Higher Brain Areas and Functions, Davis RE, Northcutt RG, eds. Ann Arbor: University of Michigan Press, pp 91–115Google Scholar
  91. Fröhlich FW (1913): Beiträge zur allgemeinen Physiologie der Sinnesorgane. Z Sinnesph ysiol 48: 28–164Google Scholar
  92. Fujimura K, Matsuda Y (1989): Autogenous oscillatory potentials in neurons of the guinea pig substantia nigra pars compacta in vitro. Neurosci Lett 104: 53–57Google Scholar
  93. Galambos R, Makeig S (1988): Dynamic changes in steady-state responses. In: Dynamics of Sensory and Cognitive Processing by the Brain, Başar E, ed. Berlin: Springer— Verlag, pp 103–122Google Scholar
  94. Galambos R, Rose JE, Bromiley RB, Hughes JR (1952): Microelectrode studies on medial geniculate body of cat. II. Response to clicks. J Neurophysiol 15:359–380Google Scholar
  95. Gelperin A (1989): Neurons and networks for learning about odors. In: Perspectives in Neural Systems and Behavior, Carew TJ, Kelley D, eds. New York: Alan R. Liss, Inc, pp 121–136Google Scholar
  96. Gelperin A, Tank DW (1990): Odor-modulated collective network oscillations of olfactory interneurons in a terrestrial mollusc (personal communication)Google Scholar
  97. Gerard R (1941): The interaction of neurones. Ohio Acad Sci 41: 160–172Google Scholar
  98. Goldbeter A (1988): Periodic signaling as an optimal mode of intercellular communication. Int Union Physiol Sci/Am Physiol Soc 3: 103–105Google Scholar
  99. Goldbeter A, Moran F (1988): Dynamics of a biochemical system with multiple oscillatory domains as a clue for multiple modes of neuronal oscillations. Eur Biophys J15:277–287Google Scholar
  100. Granit R (1941): Rotation of activity and spontaneous rhythms in the retina. Acta Physiol Scand 1: 370–379Google Scholar
  101. Granit R (1963): Sensory Mechanisms of the Retina. New York: Hafner Publishing Co. (reprinted from 1947)Google Scholar
  102. Gray CM, Singer W (1987a): Stimulus-dependent neuronal oscillations in the cat visual cortex area 17. Neuroscience 22 (Suppl.): 1301PGoogle Scholar
  103. Gray CM, Singer W (1987b): Stimulus specific neuronal oscillations in the cat visual cortex: a cortical functional unit. Soc Neurosci Abstr # 404.3Google Scholar
  104. Gray CM, Singer W (1989): Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86: 1698–1702Google Scholar
  105. Gray CM, Skinner JE (1988): Centrifugal regulation of neuronal activity in the olfactory bulb of the waking rabbit as revealed by reversible cryogenic blockade. Brain Res 69:378–386Google Scholar
  106. Gray CM, Freeman WJ, Skinner JE (1986): Chemical dependencies of learning in the rabbit olfactory bulb: acquisition of the transient spatial pattern change depends on norepinephrine. Behav Neurosci 100: 585–596Google Scholar
  107. Gray CM, König P, Engel AK, Singer W (1989): Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature (Lond) 338: 334–337Google Scholar
  108. Gray CM, Engel AK, König P, Singer W (1990a): Stimulus-dependent neuronal oscillations in cat visual cortex: receptive field properties and feature dependence. Eur J Neurosci 20: 607–619Google Scholar
  109. Gray CM, Engel AK, König P, Singer W (1991): Temporal properties of synchronous oscillatory neuronal interactions in cat striate cortex. In: Nonlinear Dynamics and Neuronal Networks, Schuster HG, ed. Weinheim: VCH Verlagsgesellschaft, pp 27–55Google Scholar
  110. Gray CM, König P, Engel AK, Singer W (1990b): Synchronization of oscillatory responses in visual cortex: a plausible mechanism for scene segmentation. In: Pro-ceedings of Conference on: Synergetics of the Brain, June 1989. Bavaria: Schloss Elman.Google Scholar
  111. Grüsser O-J, Grüsser-Cornehls U (1962): Periodische Aktivierungsphasen visueller Neurone nach kurzen Lichtreizen verschiedener Dauer. Pflügers Arch 275: 291–311Google Scholar
  112. Haberly LB, Bower JM (1989) Olfactory cortex: model circuit for study of associative memory? Trends Neurosci. 12: 258–264Google Scholar
  113. Haken H (1977): Synergetics. an Introduction. Heidelberg: Springer-VerlagGoogle Scholar
  114. Hartline DK (1989): Simulation of restricted neural networks with reprogrammable neurons. IEEE Trans Circuits and Systems 36: 653–660Google Scholar
  115. Hartline DK, Russell DF, Raper JA, Graubard K (1988): Special cellular and synaptic mechanisms in motor pattern generation. Comp Biochem Physiol 91C:115–131Google Scholar
  116. Hodgkin AL (1948): The local electric changes associated with repetitive action in a non-medullated axon. J Physiol 107:165–181Google Scholar
  117. Horn JP, Dodd J (1983): Inhibitory cholinergic synapses in autonomic ganglia. Trends Neurosci 6: 180–184Google Scholar
  118. Hughes JR (1964): Responses from the visual cortex of unanesthetized monkeys. I ñt Rev Neurobiol7: 99–152Google Scholar
  119. Jahn TL, Wulff VJ (1942): Allocation of electrical responses from the compound eye of grasshoppers. J Gen Physiol 26: 75–88Google Scholar
  120. Jahnsen H, Llinás R (1984a): Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol (Lond) 349: 205–226Google Scholar
  121. Jahnsen H, Llinás R (1984b): Ionic basis for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones In vitro. J Physiol (Lond) 349: 227–247Google Scholar
  122. Jefferys JGR, Haas HL (1982): Synchronized bursting of CA 1 hippocampal pyramidal cells in the absence of synaptic transmission. Nature 300: 448–450Google Scholar
  123. Kepler TB, Marder E, Abbott LF (1990): The effect of electrical coupling on the frequency of model neuronal oscillators. Science 248: 83–85Google Scholar
  124. Kergoat H, Lovasik JV (1990): The effects of altered retinal vascular perfusion pressure on the white flash scotopic ERG and oscillatory potentials in man. Electroencephalogr Clin Neurophysiol 75: 306–322Google Scholar
  125. Kleinfeld D, Raccuia-Behling FR, Chiel HJ (1990): Circuits constructed from identified Aplysia neurons exhibit multiple patterns of persistent activity. Biophys J 57: 697–715Google Scholar
  126. Konishi J (1960): Electric response of visual center in fish, especially to colored light flash. Jpn J Physiol 10:13–27Google Scholar
  127. Lansing RW, Barlow JS (1972): Rhythmic after-activity to flashes in relation to the background alpha which precedes and follows the flash stimuli. Electroencephalogr Clin Neurophysiol 32: 149–160Google Scholar
  128. Lee LT, Bullock TH (1990): Cerebellar units show several types of long-lasting posttetanic responses to telencephalic stimulation in catfish. Brain Behav Evol 35: 291–301Google Scholar
  129. Lee YS, Chay TR (1990): Electrical bursting in excitable cell model: a step toward understanding the neural network mechanisms. Biophys J57:130aGoogle Scholar
  130. Lenz FA, Kwan HC, Dostrovsky JO, Tasker RR (1989): Characteristics of the bursting pattern of action potentials that occurs in the thalamus of patients with central pain. Brain Res 496: 357–360Google Scholar
  131. Leresche N, Jassik-Gerschenfeld D, Haby M, Soltesz I, Crunelli V (1990): Pacemakerlike and other types of spontaneous membrane potential oscillations of thalamocortical cells. Neurosci Lett 113: 72–77Google Scholar
  132. Lestienne R, Gary-Bobo E, Przybyslawski J, Saillour P, Imbert M (1990): Temporal correlations in modulated evoked responses in the visual cortical cells of the cat. Biol Cybern 62: 425–440Google Scholar
  133. Li Y-X, Goldbeter A (1989): Frequency specificity in intercellular communication. Biophys J 55: 125–145Google Scholar
  134. Li Z, Hopfield JJ (1989): Modeling the olfactory bulb and its neural oscillatory processings. Biol Cybern 61: 379–392Google Scholar
  135. Llinás R (1988): The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242:1654–1664Google Scholar
  136. Llinás R, Yarom Y (1986): Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol (Lond) 376:163–182Google Scholar
  137. Lohmann H, Eckhorn R, Reitboeck HJ (1988): Visual receptive fields of local intracortical potentials. J Neurosci Methods 25: 29–44Google Scholar
  138. Loomis AL, Harvey EN, Hobart GA III (1938): Distribution of disturbance-patterns in the human electroencephalogram, with special reference to sleep. J Neurophysiol 1:413–430Google Scholar
  139. Lopes da Silva F (1987): Dynamics of EEGs as signals of neuronal populations: models and theoretical considerations. In: Electroencephalography: Basic Principles, Clinical Applications and Related Fields, Niedermeyer E, Lopes da Silva F, eds. Baltimore—Munich: Urban and Schwarzenberg, pp 15–28Google Scholar
  140. Madler C, Pöppel E (1987): Auditory evoked potentials indicate the loss of neuronal oscillations during general anaesthesia. Naturwissenschaften 74: S.42Google Scholar
  141. Maffei L, Galli-Resta L (1990): Correlation in the discharges of neighboring rat retinal ganglion cells during prenatal life. Proc Natl Acad Sci USA 87: 2861–2864Google Scholar
  142. Makeig S, Galambos R (1989): The 40-Hz band evoked response lasts 150 msec and increases in size at slow rates. Soc Neurosci Abstr15:113Google Scholar
  143. Malsburg C von der (1981): The correlation theory of the brain. Goettingen, Germany: Internal Report, Max-Planck-Institut for Biophysical ChemistryGoogle Scholar
  144. Malsburg C von der (1985): Nervous structure with dynamical links. Ber Bunsen-ges Phys Chem 89: 703 – 710Google Scholar
  145. Malsburg C von der, Schneider W (1986): A neural cocktail-party processor. Biol Cybern 54: 29–40Google Scholar
  146. Mastronarde DN (1989): Correlated firing of retinal ganglion cells. Trends Neurosci 12: 75–80Google Scholar
  147. Miles R, Traub RD, Wong RKS (1988): Spread of synchronous firing in longitudinal slices from the CA3 region of the hippocampus. J Neurophysiol 60: 1481–1496Google Scholar
  148. Montaron M-P, Bouyer J-J, Rougeul A, Buser P (1982): Ventral mesencephalic tegmentum (VMT) controls electrocortical beta rhythms and associated attentive behaviour in the cat. Behav Brain Res 6:129–145Google Scholar
  149. Moran F, Goldbeter A (1985): Excitability with multiple thresholds. A new mode of dynamic behavior analyzed in a regulated biochemical system. Biophys Chem 23: 71–77Google Scholar
  150. Morris C (1990): Mechanosensitive ion channels. J Membr Biol 113:93–107Google Scholar
  151. O’Benar JD (1976): Electrophysiology of neural units in goldfish optic tectum. Brain Res Bull 1: 529–541Google Scholar
  152. Pöppel E, Logothetis N (1986): Neuronal oscillations in the human brain. Naturwissenschaften 73: 267–268Google Scholar
  153. Rapp PE (1987): Why are so many biological systems periodic? Prog Neurobiol 29: 261–273Google Scholar
  154. Reeke GN Jr, Finkel LH, Sporns O, Edelman GM (1990): Synthetic neural modeling: a multilevel approach to the analysis of brain complexity. In: Signal and Sense: Local and Global Order in Perceptual Maps, Edelman GM, Gall WE, Cowan WM, eds. New York: Wiley-Liss, pp 607–707Google Scholar
  155. Regan D (1968): A high frequency mechanism which underlies visual evoked potentials. Electroencephalogr Clin Neurophysiol 25:231–237Google Scholar
  156. Robertson RM, Moulins M (1981): Firing between two spike thresholds: implications for oscillating lobster interneurons. Science 214: 941–943Google Scholar
  157. Rotterdam A van, Lopes da Silva FH, van den Endee J, Viergever MA, Hermans AJ (1982): A model of the spatial-temporal characteristics of the Alpha rhythm. Bull Math Biol 44: 283–305Google Scholar
  158. Rougeul A, Bouyer JJ, Dedet L, Debray O (1979): Fast somato-parietal rhythms during combined focal attention and immobility in baboon and squirrel monkey. Electroencephalogr Clin Neurophysiol 46: 310–319Google Scholar
  159. Sainsbury RS (1985): Type 2 theta in the guinea pig and the cat. In: Electrical Activity of the Archicortex, Buzsáki G, Vanderwolf CH, eds. Budapest: Akademiai Kiado, pp 11–22Google Scholar
  160. Schreiner CE, Joris PX (1986): Intrinsic oscillations in the primary auditory cortex of cats. Proc XXX Cong Int Union of Physiol Sci, p. 81Google Scholar
  161. Seiple W, Holopigian K (1989): An examination of VEP phase. Electroencephalogr Clin Neurophysiol 73: 520–531Google Scholar
  162. Selverston AI (1980): Are central pattern generators understandable? Behav Brain Sci 3: 535–571Google Scholar
  163. Servít Z, Strejčková A (1976): Influence of nasal respiration upon normal EEG and epileptic electrographic activities in frog and turtle. Electroencephalogr Clin Neurophysiol 25: 109–114Google Scholar
  164. Sheer DE (1989): Sensory and cognitive 40-Hz event-related potentials: behavioral correlates, brain function, and clinical application. In: Brain Dynamics: Progress and Perspectives, Başar E, Bullock TH, eds. Berlin: Springer-Verlag, pp 339–374Google Scholar
  165. Silva LR, Amitai Y, Connors BW (1991): Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science 251: 432–435Google Scholar
  166. Simpson R, Vaughan HG Jr, Ritter W (1977): The scalp topography of potentials in auditory and visual discrimination tasks. Electroencephalogr Clin Neurophysiol 42: 528–535Google Scholar
  167. Sporns O, Gally JA, Reeke GN Jr, Edelman GM (1989): Reentrant signaling among simulated neuronal groups leads to coherence in their oscillatory activity. Proc Natl Acad Sci USA 86: 7265–7269Google Scholar
  168. Steinberg RH (1966): Oscillatory activity in the optic tract of cat and light adaptation. J Neuro ph ysiol 29: 139–156Google Scholar
  169. Sturr JF, Shansky MS (1971): Cortical and subcortical responses to flicker in cats. Exp Neurol 33: 279–290Google Scholar
  170. Tasaki I, Terakawa S (1982): Oscillatory miniature responses in the squid giant axon: origin of rhythmical activities in the nerve membrane. In: Cellular Pacemakers, vol. 1, Carpenter D, ed. New York: John Wiley and Sons, Inc, pp 163–186Google Scholar
  171. Traub RD, Wong RKS (1982): Cellular mechanism of neuronal synchronization in epilepsy. Science 216: 745–747Google Scholar
  172. Traub RD, Miles R, Wong RKS (1987a): Models of synchronized hippocampal bursts in the presence of inhibition. I. Single population events. J Neurophysiol 58 : 739–751Google Scholar
  173. Traub RD, Miles R, Wong RKS, Schulman LS, Schneiderman JH (1987b): Models of synchronized hippocampal bursts in the presence of inhibition. II. Ongoing spontaneous population events. J Neurophysiol 58: 752–764Google Scholar
  174. Traub RD, Miles R, Wong RKS (1989): Model of the origin of rhythmic population oscillations in the hippocampal slice. Science 243: 1319–1325Google Scholar
  175. Viana Di Prisco G, Freeman WJ (1985): Odor-related bulbar EEG spatial pattern analysis during appetitive conditioning in rabbits. Behav Neurosci 99: 964–978Google Scholar
  176. Wachtmeister L, Dowling JE (1978): The oscillatory potentials of the mudpuppy retina. Invest Ophthalmol Visual Sci 17:1176–1188Google Scholar
  177. White G, Lovinger DM, Weight FF (1989): Transient low-threshold Ca2 + current triggers burst firing through an afterpolarizing potential in an adult mammalian neuron. Proc Natl Acad Sci USA 86: 6802–6806Google Scholar
  178. Whittaker SG, Siegfried JB (1983): Origin of wavelets in the visual evoked potential. Electroencephalogr Clin Neurophysiol 55: 91–101Google Scholar
  179. Wilson MA, Bower JM (1989): The stimulation of large- scale neural networks. In: Methods in Neuronal Modeling: From Synapses to Networks, Koch C, Segev I, eds. Cambridge, MA: MIT Press, pp 291–333Google Scholar
  180. Wright EB, Adelman WJ (1954): Accommodation in three single motor axons of the crayfish claw. J Cell Comp Physiol 43: 119–132Google Scholar
  181. Zakon HH, Meyer JH (1983): Plasticity of electroreceptor tuning in the weakly electric fish, Sternopygus dariensis. J Comp Physiol 153: 477–487Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Theodore H. Bullock

There are no affiliations available

Personalised recommendations