Alterations in Lipid Metabolism of Molluscs Due to Dietary Changes

  • George P. Hoskin
Part of the Comparative Pathobiology book series (CPATH, volume 4)


There have been few studies dealing strictly with the ef f ect of diet on molluscan lipid metabolism. Considerably more inf ormation on molluscan lipid anabolism is available. Much of this information can be related to molluscan nutrition and so to the usefulness of molluscs as models for biomedical research.


Fatty Acid Composition Digestive Gland Mytilus Edulis Ether Lipid Crassostrea Virginica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackman, R. G. (1976) . Fish oil composition. Objective Methods for Food Evaluation. Nat. Acad. Sci., 103–131.Google Scholar
  2. Ackman, R. G., Epstein, S., and Kelleher, M. (1974) . A comparison of lipids and fatty acids of the ocean quahaug, Arctica islandica, from Nova Scotia and New Brunswick. J. Fish. Res. Bd. Can, 31, 1803–1811.CrossRefGoogle Scholar
  3. Ackman, R. G. and Hooper, S. N. (1973) . Non-methylene-interrupted fatty acids in lipids of shallow-water marine invertebrates: a comparison of two molluscs (Littorina littorea and Lunatia triseriata) with the sand shrimp (Cragon septemspinosis) . Comp. Biochem. Physiol., 46B, 153–165.Google Scholar
  4. Addink, A. D. F. and Ververgaert, P.H.J.T. (1963) . Biosynthesis of cholesterol and fatty acids in a snail Helix pomatia L. after administration of 1-14C-acetate. Archs. int. Physiol. Biochem., 71, 797–801.CrossRefGoogle Scholar
  5. Albert, D. H. and Anderson, C. E. (1977) . Ether-linked glycerolipids in human brain tumors. Lipids 12, 188–192PubMedCrossRefGoogle Scholar
  6. Allen, W. V. (1977) . Interorgan transport of lipids in the blood of the gumboot chitin Cryptochiton stelleri (Middendorf) . Comp. Biochem. Physiol., 57A, 41–46.CrossRefGoogle Scholar
  7. Anderson, R. E. (1970) . Lipids of occular tissues, IV. A comparison of the phospholipids from the retina of six mammalian species. Exp. Eye Res., 10, 339–344.PubMedCrossRefGoogle Scholar
  8. Ansell, A. D. (1972) . Distribution, growth and seasonal changes in biochemical composition for the bivalve Donax vittatus (DaCosta) from Kames Bay, Millport. J. Exp. Mar. Biol. Ecol., 10 137–150.CrossRefGoogle Scholar
  9. Ansell, A. D. (1974) . Seasonal changes in biochemical composition of the bivalve Chlamys septemradiata from the Clyde Sea area. Mar. Biol., 25, 85–99.CrossRefGoogle Scholar
  10. Barry, R. J. C. and Munday, K. A. (1959) . Carbohydrate levels in Patella. J. Mar. Biol. Ass. U.K., 38, 81–95.CrossRefGoogle Scholar
  11. Bayne, B. L. (1973a) . Phys iolog ical changes induced in Mytilus edulis L. induced by temperature and nutritive stress. J. Mar. Biol. Ass. U.K., 53, 39–58.CrossRefGoogle Scholar
  12. Bayne, B. L. (1973b) . Aspects of the metabolism of Mytilus edulis L. during starvation. Neth. J. Sea Res. 7, 399–410.CrossRefGoogle Scholar
  13. Bayne, B. L. (1976) . Marine Mussels: their Ecology and Physiology. Cambridge University Press, Cambridge. 506 pp.Google Scholar
  14. Bayne, B. L., Gabbott, P. A. and Widdows, J. (1975) . Some ef f ects of stress in the adult on the eggs and larvae of Mytilus edulis L. J. Mar. Biol. Ass. U. K., 55, 675–689.Google Scholar
  15. Beare-Rogers, J. L. and Nera, E. A. (1972) . Cardiac fatty acids and histopathology of rats, pigs, monkeys and gerbils fed rapeseed oil. Comp. Biochem. Physiol., 41B, 793–800.Google Scholar
  16. Blackmore, D. T. (1969a) . Studies on Patella vulgata L. I. Growth reproduction and zonal distribution. J. Exp. Mar. Biol. Ecol., 3, 200–213.CrossRefGoogle Scholar
  17. Blackmore, D. T. (1969b) . Studies on Patella vulgata L. II. Seasonal variation in biochemical composition. J. Exp. Mar. Biol. Ecol., 3, 231–245.CrossRefGoogle Scholar
  18. Blank, M. L., Wykle, R. L., Piantadosi, C., and Synder, F. (1970) . The biosynthesis of plasmologens from labeled 0-aklylglycerols in Ehrlich Ascites cells. Biochim. Biophysics. Acta, 210, 442–447.CrossRefGoogle Scholar
  19. Carroll, K. K. (1965) . Dietary fat and fatty acid composition of tissue lipids. J. Am. oil Chem. Soc., 42, 516–552.PubMedCrossRefGoogle Scholar
  20. Castell, J. D. and Trider, D. J. (1974) . Preliminary feeding trials using artificial diets to study the nutritional requirements of oysters (Crassostrea virginica) . J. Fish. Res. Board Can., 31, 95–99.CrossRefGoogle Scholar
  21. Cheng, T. C. (1965) . Histochemical observations on changes in the lipid composition of the American oyster, Crassostrea virginica (Gmelin), parasitized by the trematode Bucephalus sp. J. Invert. Pathol., 7, 398–407.CrossRefGoogle Scholar
  22. Cheng, T. C. (1967) . Marine molluscs as hosts for symbioses: With a review of known parasites of commercially important spec ies . Advan. Mar. Biol., 5, 1–424.CrossRefGoogle Scholar
  23. Cheng, T. C. and Lee, F. O. (1971) . Glucose levels in the mollusc Biomphalaria glabrata infected with Schistosoma mansoni. J. Invertebr. Pathol., 18, 395–399.PubMedCrossRefGoogle Scholar
  24. Christiansen, R. Z., Christopherson, B. O., and Bremer, J. (1977) . Monoethylenic C20 and C22 fatty acids in marine oil and rapeseed o il . S tud ies on their oxidation and on their relative ability to inhibit palmitate oxidation in heart and liver mitochondria. Biochim. Biophys. Acta., 487, 28–36.PubMedCrossRefGoogle Scholar
  25. Christie, W. W., Moore, J. H., and Gottenbos, J. J. (1974) . Effect of dietary saturated fatty acids and linoleic acid upon the structures of triglycerides in rabbit tissues. Lipids, 9, 201–207.PubMedCrossRefGoogle Scholar
  26. deLongcamp, D., Lubet, P., and Drosdowsky, M. (1974) . The in vitro biosynthesis of steroids by the gonad of the mussel (Mytilus edulis). Genl. and Comp. Endocrin., 22, 116–127.CrossRefGoogle Scholar
  27. deMoreno, J. E. A., Moreno, V. J., and Brenner, R. R. (1976a) . Lipid metabolism of the yellow clam, Mesodesma mactroides: 1. Composition of the lipids. Lipids, 11, 334–340.CrossRefGoogle Scholar
  28. deMoreno, J. E. A., Moreno, V. J., and Brenner, R. R. (1976b) . Lipid metabolism of the yellow clam, Mesodesma mactroides: 2 — polyunsaturated fatty acid metabolism. Lipids, 11, 561–566.CrossRefGoogle Scholar
  29. Di Prisco, C. L., Fulgheri, F. D. and Tomasucci, M. (1973) . Identification and biosynthesis of steroids in the marine mollusc Aplysia depilans. Comp. Biochem. Physiol., 45B, 303–310.Google Scholar
  30. Emerson, D. N. (1967) . Carbohydrate or ient ed metabo l ism of Planorbis corneus (Mollusca, Planorbidae) during starvation. Comp. Biochem. Physiol., 22, 571–579.CrossRefGoogle Scholar
  31. Emerson, D. N. and Duerr, F. G. (1967) . Some physiological effects of starvation in the intertidal prosobranch Littorina planexis (Philippi, 1847) . Comp. Biochem. Physiol., 20, 45–53.CrossRefGoogle Scholar
  32. Epifanio, C. E. (1976) . Culture of Bivalve Mollusks in Recirculating systems: Nutritional Requirements. In: “Proc. First Int. Conf. on Aquaculute Nutrition” pp. 173–194. (K.S. Price, Jr., W. N. Shaw, K. D. Danberg, eds.) . University of Delaware, Newark, Delaware.Google Scholar
  33. Faas, E. H., Carter, W. J., and Wynn, J. O. (1977) . Unsaturated fatty acyl-CoA inhibition of cholesterol synthesis in vitro. Biochim. Biophys. Acta., 487, 277–286.PubMedCrossRefGoogle Scholar
  34. Fagerlund, U. H. M. and Idler, D. R. (1960) . Marine sterols. Sterol biosynthesis in molluscs and echinoderms. Can. J. Biochem. Physiol., 38, 997–1002.PubMedCrossRefGoogle Scholar
  35. Fagerlund, U. H. M. and Idler, D. R. (1961) . Biosynthesis of 24methylene cholesterol in clams. Can. J. Biochem. Physiol., 39, 1347–1355.PubMedCrossRefGoogle Scholar
  36. Feeley, R. M., Criner, P. E., and Watt, B. K. (1972) . Cholesterol content of foods . J. Am. Diet Assoc., 61, 134–149.PubMedGoogle Scholar
  37. Gabbott, P. A. and Holland, D. L. (1973) . Growth and metabolism of Ostrea edulis larvae. Nature, 241, 475–576.CrossRefGoogle Scholar
  38. Gabbott, P. A. and Bayne, B. L. (1973) . Biochemical effects of temperature and nutritive stress on Mytilus edulis L. J. Mar. Biol. Ass. U. K., 53, 269–286.CrossRefGoogle Scholar
  39. Gardner, D. and Riley, J. P. (1972) . The component fatty acids of the lipids of some species of marine and fresh water molluscs. J. Mar. Biol. Ass. U.K., 52, 827–838.CrossRefGoogle Scholar
  40. Giese, A. C. (1966) . Lipids in the economy of marine invertebrates . Physiol. Rev., 46, 244–298.PubMedGoogle Scholar
  41. Giese, A. C. (1969) . A new approach to the Biochemical Composition of the mollusc body. In: “Oceanogr. Mar. Biol. Ann. Rev.” p. 175–229. (H. Barnes, ed.) . George Allen & Unwin, Ltd., London.Google Scholar
  42. Gilles, R. (1972) . Biochemical ecology of mollusca. Chem. Zool., 7, 467–499.Google Scholar
  43. Ginter, E., Nemec, R., Cerven, J., and Milkus, L. (1973) . Quantification of lowered cholesterol oxidation in guinea pigs with latent v itam in C deficiency . Lipids, 8, 135–141.PubMedCrossRefGoogle Scholar
  44. Goad, L. J., Knapp, F. F., Lenton, J. R., and Goodwin, T. W. (1972) . Sterol side-chain alkylation mechanism in a Trebouxia species. Biochem. J., 129, 219–222.PubMedGoogle Scholar
  45. Goddard, C. K. and Martin, A. W. (1966) . Carbohydrate metabolism. In: “Physiology of the Mollusca.” Vol. 2. pp. 275–308. (K. M. Wilber and C. M. Yonge, eds.) . Academic Press, New York.Google Scholar
  46. Goodman, D. S. (1965) . Cholesterol ester metabolism. Physiol. Rev., 45, 747–839.PubMedGoogle Scholar
  47. Gottfried, H. and Dorfman, R. I. (1969) . The occurrence of the in vivo cholesterol biosynthesis in an invertebrate Ariolimax californicus. Gen. Comp. Endocrinol., (Suppl .) 2, 590–593.CrossRefGoogle Scholar
  48. Gottfried, H. and Dorfman, R. I. (1970) . Steroids of invertebrates. V. The in vitro biosynthesis of steroids by the malephase ovotestis of the slug (Ariolimax cali fornicus) . Gen. Comp. Endocrinol., 15, 120–138.PubMedCrossRefGoogle Scholar
  49. Gudbjarnason, S. and Oskarsdottier, G. (1977) . Modification of fatty acid composition of rat heart lipids by feeding cod liver oil. Biochim. Biophys. Acta., 487, 10–15.PubMedCrossRefGoogle Scholar
  50. Gurr, M. I. and James, A. T. (1975) . Lipid Biochemistry: An Introduction, 2nd ed. Chapman and Hall, London-John Wiley and Sons Inc., New York. 244 pp.Google Scholar
  51. Hagerman, D., Wellington, F. D., and Villee, C. A. (1957) . Estrogens in marine invertebrates. Biol. Bull., 112, 180–183.CrossRefGoogle Scholar
  52. Harper, H. A. (1967) . Review of Physiological Chemistry, 11th ed. Lange Medical Publications, Lost Altos. CA. 522 ppGoogle Scholar
  53. Helm, M. M., Holland, D. L., and Stephenson, R. R. (1973) . The ef f ect of supplementary algal feeding of a hatchery breeding stock of Ostrea edulis L. on larval vigour. J. Mar. Biol. Ass. U. K., 53, 673–684.CrossRefGoogle Scholar
  54. Hemler, M. E. and Lands, W. E. M. (1977) . Biosynthesis of prostaglandins. Lipids, 12, 591–595.PubMedCrossRefGoogle Scholar
  55. Hidu, H. and Tubiash, H. S. (1963) . A bacterial basis for the growth of antibiotic — treated bivalve larvae. Proc. Nat. Shellfish Assn., 54, 25–39.Google Scholar
  56. Holland, D. L. and Gabbott, P. A. (1971) . A microanalytical scheme for the determination of protein, carbohydrate, lipid and RNA levels in marine invertebrate larvae. J. Mar. Biol. Ass. U. K., 51, 659–668.CrossRefGoogle Scholar
  57. Holland, D. L. and Spencer, B. E. (1973) . Biochemical changes in fed and starved oysters, Ostrea edulis L. during larval development metamorphosis and early spat growth. J. Mar. Biol. Assn. U. K., 53, 287–298.CrossRefGoogle Scholar
  58. Holland, D. L., Tantanasiriwong, R., and Hannant, P. J. (1975) . Biochemical composition and energy reserves in larval and adults of the four British periwinkles Littorina littorea, L. littoralis, L. saxatilis, and L. neritoides. Mar. Biol. 33, 235–239.CrossRefGoogle Scholar
  59. Hopkins, G. J. and West, C. E. (1977) . Diet induced changes in the fatty acid composition of mouse hepatocyte plasma membranes. Lipids, 12, 327–334.PubMedCrossRefGoogle Scholar
  60. Hoskin, G. P. and Hoskin, S. P. (1977) . Partial characterizat ion of the hemolymph lipids of Mercenaria mercenaria (Mollu sca : B ivalv ia) by thin-layer chromatography and analyses of serum fatty acids during starvation. Biol. Bull., 152,,373–381.CrossRefGoogle Scholar
  61. Houtsmuller, U. M. T. (1972) . Evaluation of modern foods as sources of lipids. In: “Lipids, Malnutrition and the Developing Brain”. Ciba Foundation Symposium: 213–220. Assoc. Sci. Publishers, Amsterdam.Google Scholar
  62. Hsu, C. M. L. and Kummerow, F. A. (1977) . Influence of Elaidate and Erucate on heart mitochondria. Lipids, 12, 486–494.PubMedCrossRefGoogle Scholar
  63. Idler, D. R., Sangalang, G. B., and Kanazawa, A. (1969) . Steroid desmolase in gonads of a marine invertebrate, Placopecten magellanicus . Gen. Comp. Endocrinol., 12, 222–230.PubMedCrossRefGoogle Scholar
  64. Idler, D. R. and Wiseman, P. (1971) . Sterols of Molluscs. Int. J. of Biochemistry, 2, 516–528.CrossRefGoogle Scholar
  65. Idler, D. R. and Wiseman, P. (1972) . Molluscan sterols: a review. J. Fish. Res. Bd. Can., 29, 385–398.CrossRefGoogle Scholar
  66. Imai, T. and Hatanaka, A. (1949) . On the artificial propagation of the Japanese common oyster, Ostrea gigas Thun., by non-colored naked f lagellates . Bull. Inst. Agric. Res., Tohoku Univ., 1, 33–46.Google Scholar
  67. Isay, S. V., Makarchenko, M. A., and Vaskovsky, V. E. (1976) . A study of glyceryl ethers — I. Content of glyceryl ethers in marine invertebrates from the sea of Japan and tropical regions of the Pacific ocean. Comp. Biochem. Physiol., 55B, 301–305.Google Scholar
  68. Kanazawa, A. and Teshima, S., -I . (1972) . Sterols of the suspended matters in sea water. J. Oceanogr. Soc. Jap., 27, 207–212.CrossRefGoogle Scholar
  69. Kanazawa, S., Teshima, S.-I., Ando, T., and Tomita, S. (1976) . Sterols in coral reef animals. Mar. Biol., 34, 532–557.CrossRefGoogle Scholar
  70. Karim, S. M. M. (1971a) . Ef f ects of oral administration of prostaglandin E2 and F2∞ on human uterus. J. Obstet. Gynaec. Br. Commonw., 78, 289–293.CrossRefGoogle Scholar
  71. Karim, S. M. M. (1971b) . Action of prostaglandin in the pregnant woman. Ann. N. Y. Acad. Sci., 180, 483–498.PubMedCrossRefGoogle Scholar
  72. Karnaukhov, V. N., Milovidova, N. Y., and Kargopolova, I. N. (1977) . On a role of carotenoids in tolerance of sea molluscs to environmental pollution. Comp. Biochem. Physiol., 56A, 188–193.Google Scholar
  73. Keenan, T. W. and Morre, D. J. (1970) . Phospholipid class and fatty acid composition of Golgi apparatus isolated from rat liver and comparison with other cell fractions . Biochemistry, 9, 19–25.PubMedCrossRefGoogle Scholar
  74. Khalil, M. W. and Idler, D. R. (1976) . Steroid biosynthesis in thw whelk Buccinium undatum. Comp. Biochem. Physiol., 55B, 239–242.Google Scholar
  75. Koganezawa, A. (1976) . Mass rearing of offshore-type bivalve larval in Japan. In: “Proc. First Int. Conf. on Aquaculture Nutrition”. pp. 162–171. (K. S. Price, Jr., W. N. Shaw, K. S. Danberg, eds.) . Univ. of Delaware. Newark Delaware.Google Scholar
  76. Kok, L. T. and Norris, D. M. (1972) . Comparative sterol compositions of adult female Xyleborus ferrugineus and its naturalistic fungal ectosymbionts. Comp. Bio. Physio., 44, 499–505.Google Scholar
  77. Kremer, B. P. and Schmitz, K. (1976) . Aspects of 14CO2-fixation by endosymbiotic rhodoplasts in the marine opisthobranchiate Hermaea bifida. Mar. Biol., 34, 313–316.CrossRefGoogle Scholar
  78. Kuroda, M. and Endo, A. (1977) . Inhibition of in vitro cholesterol synthesis by fatty acids. Biochim. Biophys. Acta., 486, 70–81.CrossRefGoogle Scholar
  79. Lands, W. E. M., LeTellier, P. R., Rome, L., and Vanderhoek, J. Y. (1974) . Regulation of prostaglandin synthesis. In: “Prostaglandin Synthetase Inhibitors”. pp. 1–7. (H. J. Robinson and J. R. Vane, eds.) . Raven Press, New York, . N.Y.Google Scholar
  80. Larsson, Å. and Fänge, R. (1977) . Cholesterol and free fatty ac id s (FFA) in the blood of marine fish . Comp. Biochem. Physiol., 57B, 191–196.Google Scholar
  81. Lawrence, J. M. (1965) . “Lipid levels in body fluid, blood and tissues of some echinoderms and molluscs in relation to nutritional state”. Ph.D. Thesis, Stanford University, Stanford, California.Google Scholar
  82. Lawrence, J. M. (1976) . Patterns of lipid storage in post-metamorphic marine invertebrates. Amer. Zool., 16, 747–762Google Scholar
  83. Lee, F. O. and Cheng, T. C. (1971a) . Schistosoma mansoni inf ec tion in Biompalaria glabrata: alterations in heart rate and thermal tolerance in the host. J. Invert. Path., 18, 412–418.CrossRefGoogle Scholar
  84. Lee, F. O. and Cheng, T. C. (1971b) . Schistosomca mansoni: respriometric and partial pressure studies in infected Biomphalaria glabrata. Exp. Parasit., 30, 393–399.PubMedCrossRefGoogle Scholar
  85. Lee, F. O. and Cheng, T. C. (1972) . Incorporation of 59Fe in the snail Biomphalaria glabrata parasitized by Schistosoma mansoni. J. Parasitol., 58, 481–488.PubMedCrossRefGoogle Scholar
  86. Lee, R. F., Nevenzel, J. C., and Paffenhofer, G.- A. (1971) . Importance of wax esters and other lipids in the marine food chain: phytoplankton and copepods. Marine Biol., 9, 99–108.CrossRefGoogle Scholar
  87. Lubet, P. E. and LeGall, P. (1974) . Etude expérimentale de l’ indidence du cerveau sur le métabolisme des glucides et des lipides chey le mollusque mésogostropode. (Crepidula fornicata Phil.). Annales d’Endocrinologie (Paris), 35, 383–386.Google Scholar
  88. Lunetta, J. E. and Vernberg, W. B. (1971) . Fatty acid composition of parasitized and non parasitized tissue of the mudflat snail, Nassarius obsoletus (Say) . Expl. Parasit., 30, 244–248.CrossRefGoogle Scholar
  89. Malek, E. A. and Cheng, T. C. (1974) . Medical and Economic Malacology. Academic Press, New York. 398 pp.Google Scholar
  90. Malins, D. C. and Wekell, J. C. (1969) . The lipid biochemistry of marine organisms. In: “Progress in the chemistry of fats and other lipids.” pp. 339–363 . (R. T. Holman, ed.) . Pergamon Press, Oxford.Google Scholar
  91. Martoja, M. (1972) . Endocrinology of mollusca. Chem. Zool., 7, 349–392.Google Scholar
  92. Matsubosa, T. and Haugshi, A. (1973) . Identification of molecular species of ceramide aminoethylphosphonate from oyster adductor by gas-liquid chromatography-mass spectrometry. BioChim. Biophys. Acta., 296, 171–178.CrossRefGoogle Scholar
  93. McGandy, R. B. and Hegsted, D. M. (1975) . Quantitative effects of dietary fat and cholesterol on serum cholesterol in man. In: “The role of fats in human nutrition” pp. 211–23O. (A. J. Vergrosen, ed.) . Academic Press, London.Google Scholar
  94. McManus, D. P., Marshall, I., and James, B. L. (1975) . Lipids in digestive gland of Littorina saxatilis rudis (Maton) and in daughter sporocysts of Microphallus similis (Jäg. 1900) . Exptl l. Parasit., 37, 157 –163.CrossRefGoogle Scholar
  95. Millar, R. H. and Scott, J. M. (1967) . The larvae of the oyster Ostrea edulis during starvation. J. Mar. Biol. Ass. U.K., 47, 475–484.CrossRefGoogle Scholar
  96. Muscatine, L. (1967) . Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science, 156, 516–519.PubMedCrossRefGoogle Scholar
  97. Nestel, P. J., Havenstein, N., Homma, Y., Scott, T. W., and Cook, L. J. (1975) . Increased sterol excretion with polyunsaturated-f at high-cholesterol diets. Metabolism, 24, 189–198.PubMedCrossRefGoogle Scholar
  98. Odutuga, A. A. (1977) . Recovery of brain from def ic iency of essential fatty acids in rats. Biochim. Biophys. Acta., 487, 1–9.PubMedCrossRefGoogle Scholar
  99. Orten, J. M. and Newhaus, O. W. (1975) . Human Biochemistry, 9th ed. C. V. Mosby Co., St. Louis, Missouri. 995 pp.Google Scholar
  100. Oudejans, R. C. H. M. and van der Horst, D. J. (1974) . Effect of excessive fatty acid ingestion upon composition of neutral lipids and phospho lipids of snail Helix pomatia L. Lipids, 9, 798–803.PubMedCrossRefGoogle Scholar
  101. Pardis, M. and Ackman, R. G. (1975) . Occurrence and chemical structure of nonmethylene-interrupted dienoic fatty acids in American oyster Crassostrea virginica. Lipids. 10 12–16CrossRefGoogle Scholar
  102. Pardis, M. and Ackman, R. G. (1977) . Potential for employing the distribution of anamolous nonmethylene-interrupted dienoic fatty acids in several marine invertebrates as part of food web studies. Lipids, 12, 170–176.CrossRefGoogle Scholar
  103. Patterson, G. W., Khalil, M. W., and Idler, D. R. (1975) . Sterols of Scallop. I. Application of hydrophobic sephadex derivatives to the resolution of a complex mixture of marine sterols. J. Chromat., 115, 153–159.CrossRefGoogle Scholar
  104. Piretti, M. V. and Viviani, R. (1976) . Investigation of the constituent sterols of Venus gallina. Comp. Biochem. Physiol., 55B, 229–234.Google Scholar
  105. Porter, C. A. and Gamble, W. (1973) . Observations on the ef f ect of the rediae of Nanophyetus salmincola on the fatty acid content of the hepatopancreas of Oxytrema silicula (Gould) . Comp. Biochem. Physiol., 45B, 905–909.Google Scholar
  106. Rahm, J. J. and Holman, R. T. (1964) . Studies of the metabolism of polyunsaturated acids by short-term experiments. J. Nutrition, 84, 149–154.Google Scholar
  107. Rapport, M. M. (1961) . The α, β unsaturated ether (plasmologen) content of the tissues of several molluscs. Biol. Bull., 121, 376–377.Google Scholar
  108. Rapport, M. M. and Alonzo, N. F. (1960) . The structure of plasmologens. V. Lipids of marine invertebrates. J. Biol. Chem., 235, 1953–1956.PubMedGoogle Scholar
  109. Rossiter, R. J. and Strickland, A (1960) . The metabolism and function of phosphatides. In: “Lipide Metabolism”. pp. 69–127 . (K. Bloch, ed.). John Wiley & Sons, Inc., New York.Google Scholar
  110. Rathbone, L. (1965) . The ef f ect of diet on the fatty acid compositions of serum, brain, brain mitochondria and myelin in the rat. Biochem. J., 97, 620–628.PubMedGoogle Scholar
  111. Runham, N. W. (1975) . Alimentary Canal. In: “Pulmonates. I: Functional Anatomy and Physiology”. pp. 53–104. (V. Fretter and J. Peake, eds.) . Academic Press, New York.Google Scholar
  112. Salaque, A., Barbier, M., and Lederer, E. (1966) . Sur la biosynthése des sterols de l’huitre Ostrea gryphea et de l’ oursin Paracentrotus lividus. Comp. Biochem. Physiol., 19, 45–51.CrossRefGoogle Scholar
  113. Saliot, A. and Barbier, M. (1971) . Sur l’isolement de la progésterone et de quelques cétostéroides de las partie femelle desgonades de la Coquille Saint-Jacques Pecten maximus. Biochimie, 53, 265–266.PubMedCrossRefGoogle Scholar
  114. Sherman, H. C. (1941) . “Chemistry of Food and Nutrition”, 6th ed. The MacMillan Co., New York. 611 pp.Google Scholar
  115. Slowey, J. F., Jeffrey, L. M., and Hood, D. W. (1962) . The fatty acid content of ocean water. Geochim. et Cosmochim. Acta., 26, 607–616.CrossRefGoogle Scholar
  116. Smith, W. L. and Chanley, M. H. (1975) . Culture of Marine Invertebrates. Plenum Press, New York. 338 pp.CrossRefGoogle Scholar
  117. Snyder, R. (1969a) . The biochemistry of lipids containing ether bonds. In: “Progress in the chemistry of fats and other lipids” . pp. 287–335, 10 (R. T. Holman, ed.) . Pergamon Press, Oxford.Google Scholar
  118. Snyder, F. (1969b) . Ethers-linked lipids in neoplasms of man and animals: methods of measurement and the occurrence and nature of the alkyl and alk-l-enyl moieties. In: “Advances in experimental Medicine and Biology” . pp. 609–6214, Plenum Press, New York.Google Scholar
  119. Snyder, F. (1972) . Enzyme systems that synthesize and degrade glycerolipids possessing ether bonds. Adv. in Lipid Res., 10, 233–259.Google Scholar
  120. Standen, O. D. (1951) . Some observations upon the maintenance of Australorbis glabratus in the laboratory. Ann. Trop. Med. Parasitol., 45, 80–83.Google Scholar
  121. Stern, G. (1970) . Production et bilan energetique chez la limace rouge. Terre Vie, 24, 403–424.Google Scholar
  122. Steudler, P. A., Schmitz, F. J., and Ciereszko, L. S. (1977) . Chemistry of coelenterates. Sterol composition of some predator-prey pairs on coral reefs. Comp. Biochem. Physiol., 56B, 385–392.Google Scholar
  123. Sugita, M., Itasaka, O., and Hori, T. (1976) . Branched longchain bases from the bivalve Corbicula sandai. Chem. Physic. Lipids, 16, 1–8.CrossRefGoogle Scholar
  124. Sumner, A. T. (1965) . Experiments on phagocytosis and lipid absorption in the alimentary system of Helix. J. Roy. Mic. Soc., 84, 415–421.CrossRefGoogle Scholar
  125. Suryanarayanan, H. and Alexander, K. M. (1971) . Fuel reserves of molluscan muscle. Comp. Biochem. Physiol., 40A, 55–60.CrossRefGoogle Scholar
  126. Suryanarayanan, H. and Alexander, K. M. (1973) . Biochemical studies on red muscles of the gastropod Pila virens, with a note on its histochemistry. Comp. Biochem. Physiol., 44A, 1157–1162.CrossRefGoogle Scholar
  127. Tamura, T., Truscott, B., and Idler, D. R. (1964) . Sterol metabolism in the oyster. J. Fish Res. Bd. Canada, 21, 1519–1522.CrossRefGoogle Scholar
  128. Taylor, D. L. (1971) . Photosynthesis of symbiotic chloroplasts in Tridachia crispata (Bergh) . Comp . Biochem. Physiol., 38A, 233–236.CrossRefGoogle Scholar
  129. Taylor, D. L. (1973a) . The cellular interactions of algal-invertebrate symbiosis. Adv. Mar. Biol., 2, 1–56.CrossRefGoogle Scholar
  130. Taylor, D. L. (1973b) . Algal symbionts of invertebrates. Ann. Rev. Microbiol., 27, 171–187.CrossRefGoogle Scholar
  131. Teshima, S.-I. and Kanazawa, A. (1973) . Biosynthesis of 7cholestenol in the chiton, Liolophura japonica. Comp. Biochem. Physiol., 44B, 881–887.Google Scholar
  132. Teshima, S.-I. and Kanazawa, A. (1974) . Biosynthesis of sterols in abalone, Haliotis-gurneri and mussel, Mytilus edulis. Comp. Biochem. Physiol., 47B, 555–561.Google Scholar
  133. Thiele, O. W. (1959) . Der lipide de Weinbergschnecke (Helix pomatia L.) I. Mitteilung : jahreszeitliche veranderungen in der zussammensetzung der lipide. Z. Vergl. Physiol., 42, 484–491.CrossRefGoogle Scholar
  134. Thompson, G. A., Jr. (1966) . The biosynthesis of ether-containing phospholipids in the slug, Arionater. II. The role of glycerol ether lipids as plasmologen precursors. Biochemistry, 5, 1290–1296.PubMedCrossRefGoogle Scholar
  135. Thompson, G. A., Jr. (1968) . The biosynthesis of ether-containing phospholipids in the slug, Arionater. III. Origin of the vinylic ether bond of plasmologens. Biochem. Biophysics. Acta., 152, 409–411.CrossRefGoogle Scholar
  136. Thompson, G. A., Jr. (1972a) . Ether-linked lipids in molluscs. In: “Ether lipids: Chemistry and Biology”. pp. 313–320. (F. Snyder, ed.) . Academic Press, New York.CrossRefGoogle Scholar
  137. Thompson, G. A., Jr. (1972b) . Ether-linked lipids in protozoa. In: “Ether lipids: Chemistry and Biology”. pp. 321–327. (F. Snyder, ed.) . Academic Press, New York.CrossRefGoogle Scholar
  138. Thompson, R. J., Ratcliffe, N. A., and Bayne, B. L. (1974) . Effects of starvation on structure and function in the digestive gland of the mussel (Mytilus edulis L.) . J. Mar. Bio l. Ass. U. K., 54, 699–712.CrossRefGoogle Scholar
  139. Thompson, S. N. (1973) . A review and comparative characterization of the fatty acid compositions of seven insect orders. Comp. Biochem. Physiol., 45B, 467 –482.Google Scholar
  140. Tinoco, J., Miljanich, P., and Medwadowski, B. (1977) . Depletion of docosahexaenoic acid in retinal lipids of rats fed a linolenic acid-deficient, linoleic acid-containing diet. Biochim. Biophys. Acta., 486, 575–578.PubMedCrossRefGoogle Scholar
  141. Tornabene, T. G., Kates, M., and Volcani, B. E. (1974) . Sterols alaphatic hydrocarbons, and f at ty ac id s of a nonphoto synthet ic diatom, Nitschia alba. Lipids, 9, 279–284.CrossRefGoogle Scholar
  142. Treguer, P., LeCorre, P., and Courtot, P. (1972) . A method for determination of the total dissolved free fatty-acid content of sea water. J. Mar. Biol. Ass. U.K., 52, 1045–1055.CrossRefGoogle Scholar
  143. Ukeles, R. (1976) . Views on bivalve larvae nutrition. In: “Proc. First Int. Conf. on Aquaculture Nutrition”. pp. 127 –162. (K. S. Price, Jr., W. N. Shaw, D. S. Danberg, eds.) . Univ. of Delaware, Newark, Delaware.Google Scholar
  144. van der Horst, D. J. (1973) . Biosynthesis of saturated and unsaturated fatty acids in the pulmonate land snail Cepaea nemoralis (L.) . Comp Biochem. Physiol., 46B, 551–560.Google Scholar
  145. van der Horst, D. J. (1974) . In vivo biosynthesis of fatty acids in the pulmonate land snail Cepaea nemoralis (L.) under anoxic conditions. Comp. Biochem. Physiol., 47B, 181–187.Google Scholar
  146. van der Horst, D. J., Kingma, F. J., and Oudejans, R. C. H. M. (1973) . Phospholipids of the pulmonate land snail Cepaea nemoralis (L.) . Lipids, 8, 759–765.CrossRefGoogle Scholar
  147. van der Horst, D. J., Oudejans, R. C. H. M., Meijers, J. A., and Testerink, G. J. (1974) . Fatty acid metabolism in hibernating Cepaea nemoralis (Mollusca:Pulmonata) . J. Comp. Physiol., 91, 247–256.CrossRefGoogle Scholar
  148. van der Horst, D. J. and Oudejans, R. C. H. M. (1976) . Fate of dietary linoleic and linolenic acids in the land snail Cepaea nemoralis (L.) . Comp. Biochem. Physiol., 55B, 167–170.Google Scholar
  149. van der Horst, D. J. and Zandee, D. I. (1973) . Invariability of the composition of fatty acids and other lipids in the pulmonate land snail Cepaea nemoralis (L.) during an annual cycle. J. Comp. Physiol., 85, 317–326.CrossRefGoogle Scholar
  150. von Brand, T., McMahon, P., and Noland, M. (1957) . Physiological observations on starvation and desiccation of the snail. Australorbis glabratus. Bio. Bull., 113, 89–102.CrossRefGoogle Scholar
  151. Voogt, P. A. (1967a) . Biosynthesis of 3β-sterols in a snail, Archs. RufusL. , from 1- 14C-acetate. Archs. Int. Physiol. Biochem., 75, 492–500.CrossRefGoogle Scholar
  152. Voogt, P. A. (1967b) . Investigations on the capacity of synthesizing 3β-sterols in Mollusca. I. Absence of 3β-sterol synthesis in a whelk, Buccinium undatum L. Arch. Int. Physiol. Biochem., 75, 809–815.CrossRefGoogle Scholar
  153. Voogt, P. A. (1968a) . Investigations of the capacity of synthesizing 3β-sterols in Mollusca. II. Study on the biosynthesis of 3β-sterols in some representatives of the order Basommatomorpha. Comp. Biochem. Physiol., 25, 943–948.CrossRefGoogle Scholar
  154. Voogt, P. A. (1968b) . Invest igat ions of the capacity of synthesizing 3β-sterols in Mollusca. III. The biosynthesis of 3β-sterols in some archeogastropods. Archs. Int. Physiol. Biochem., 76, 721–730.CrossRefGoogle Scholar
  155. Voogt, P. A. (1969) . Investigations of the capacity of synthesizing 3β-sterols in Mollusca. IV. The biosynthesis of 3βsterols in some mesogastropods. Comp. Biochem. Physiol., 31, 37–46.CrossRefGoogle Scholar
  156. Voogt, P. A. (1971) . Invest igat ions of the capacity of synthesizing 3β-sterols in mollusca. V. The biosynthesis and composition of 3β-sterols in the mesogastropods Crepidula fornacata and Natica cataena. Comp . Biochem. Physiol., 39B, 139–149.Google Scholar
  157. Voogt, P. A. (1972) . Lipid and sterol components and metabolism in mo llu sca . Chem. Zool., 7, 245–300.Google Scholar
  158. Voogt, P. A. (1975a) . Invest igat ions of the capacity of synthesizing 3β-sterols in mollusca. XIII. Biosynthesis and composition of sterols of some bivalves (Anisomyaria) . Comp. Biochem. Physiol., 50B, 499–504.Google Scholar
  159. Voogt, P. A. (1975b) . Invest igat ions of the capacity of synthesizing 3β-sterols in mollusca. XIV. Biosynthesis and composition of sterols of some bivalves (Eulamellibranchia) . Comp. Biochem. Physiol., 50B, 506–510.Google Scholar
  160. Walton, M. J. and Pennock, J. F. (1972) . Some studies on the biosynthesis of ubiquinone, isoprenoid alcohols, squalene and sterols by marine invertebrates. Biochem. J., 127, 471–479.PubMedGoogle Scholar
  161. Watanabe, T. and Ackman, R. G. (1972) . Effect of unicellular algal lipids on oyster fatty acid composition. Fish. Res. Bd. Can. Tech. Rept. No. 334.Google Scholar
  162. Watanabe, T. and Ackman, R. G. (1974) . Lipids and fatty acids of the American (Crassostrea virginica) and European flat (Ostrea edulis) oysters from a common habitat, and after one feeding with Dicrateria inornata or Isochrysis galbana. J. Fish. Res. Bd. Can., 31, 403–409.CrossRefGoogle Scholar
  163. Watanabe, T. and Ackman, R. G. (1977) . Effect of storage on lipids and fatty acids of oysters. J. Inst. Can. Sci. Technol. Aliment., 10, 40–42.Google Scholar
  164. Williams, C. S. (1969) . The ef f ect of Mytilicola intestinalis on the biochemical composition of mussels. J. Mar. Biol. Ass. U. K., 49, 161–173.CrossRefGoogle Scholar
  165. Williams, E. E. (1970) . Seasonal variations in the biochemical composition of the edible winkle Littorina littorea (L.) . Comp. Biochem. Physiol., 33, 655–661.CrossRefGoogle Scholar
  166. Williams, P. M. (1965) . Fatty acids derived from lipids of marine origin. J. Fish. Res. Bd. Can. . 22, 1107–1122.CrossRefGoogle Scholar
  167. Wolfe, D. A., Rao, P. V., and Cornwell, D. G. (1965) . The fatty acid composition of crayfish lipids. J. Am. Oil Chem. Soc., 42, 633–637.PubMedCrossRefGoogle Scholar
  168. Zandee, D. I. (1967) . Absence of cholesterol synthesis in Sepia officinalis . Arch. Int . Physio l. Biochem., 75, 487–491.CrossRefGoogle Scholar
  169. Zs-Nagy, I. (1971) . The lipochrome pigment of molluscan neurons as a specific electron acceptor. Comp. Biochem. Physiol., 40A, 595–602.CrossRefGoogle Scholar
  170. Zs-Nagy, I. and Ermini, M. (1972) . Oxidation of NADH2 by the lipochrome pigment of the tissues of the bivalve Mytilus galloporvincialis (Mollusca, Pelecypoda) . Comp. Biochem. Physiol., 43, 39–46.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • George P. Hoskin
    • 1
  1. 1.Department of Surgery Downstate Medical CenterState University of New YorkBrooklynUSA

Personalised recommendations