Advertisement

On the Phenomenology of Rubberlike Behavior

  • Robert F. Landel
  • Robert F. Fedors

Abstract

A simple functional statement of the stress-strain response can be used as the basis for a phenomenological investigation (or presentation) of the response, including rupture. Experimental observations on time-temperature or time-chain concentration superposition, time-strain factorizability, and the proportionality of stress with chain concentration can all be invoked to produce a simple, rather all-encompassing representation of the response. The results turn out to be very similar for all elastomers.

A semiquantitative molecular theory is reviewed which, though incomplete, accounts for much of the response in the rubbery region. Nine molecular parameters are identified. Unsolved problems include the origin and molecular description of the slow relaxation processes associated with entanglements and a molecular theory of finite strain elastic and viscoelastic response.

Keywords

Natural Rubber Hydroxy Ethyl Methacrylate Molecular Theory Failure Envelope Styrene Butadiene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Landel, R. F., “Some Effects of Fillers on the Deformation and Rupture of an Elastomer”, in Mechanics and Chemistry of Solid Propellants, A. C. Eringen, H. Liebowitz, S. L. Koh, and J. M. Crowley (Eds.); Pergamon Press, London (1967), 575 pp.Google Scholar
  2. 2.
    Fedors, R. F., and Landel, R. F., “Fracture of Amorphous Polymers”, in Proc. First Int. Conf. on Fracture, T. Yokobori, T. Kawasaki, and J. L. Swedlow (Eds.), The Japanese Society for Strength and Fracture of Materials, Tokyo, Japan (1966), Vol 2, p. 1247; Rubber Chem. and Techn, 40, 1049 (1967).Google Scholar
  3. 3.
    Landel, R. F., and Fedors, R. F., “A Molecular Theory of Elastomer Deformation and Rupture”, in Mechanical Behavior of Materials, The Society of Materials Science, Japan (1972), Vol III, p. 496.Google Scholar
  4. 4.
    Fedors, R., “Uniaxial Rupture of Elastomers”, in Elastomers: With Emphasis on the Stereo-specific, W. M. Saltman (Ed.) M. Dekker, New York (1972), in press.Google Scholar
  5. 5.
    Janacek, J., private communication(September 1972 ).Google Scholar
  6. 6.
    Halpin, J. C., J. Polymer Sci, Part C, 16, 1037 (1965); and J. Appt. Phys, 36, 2975 (1965).CrossRefGoogle Scholar
  7. 7.
    Smith, T. L., Paper presented at the Sixth International Congress on Rheology, Lyon, France, September, 1972.Google Scholar
  8. 8.
    Fedors, R. F., and Landel, R. F., Unpublished results.Google Scholar
  9. 9.
    Space Program Summaries 3741, IV, 97 (August, 1966); 37–54, III, 97 (December, 1968 ); and 37–55, III, 193 (February, 1969 ), Jet Propulsion Laboratory, Pasadena, California.Google Scholar
  10. 10.
    Marvin, R. S., Viscoelasticity — Phenomenological Aspects, J. T. Bergen (Ed.) Academic Press, New York (1960), p. 27.Google Scholar
  11. 11.
    Landel, R. F., Unpublished results.Google Scholar
  12. 12.
    Ferry, J. D., Viscoelastic Properties of Polymers, John Wiley & Sons, New York: (a) 1st Edition (1961), p. 462; (b) 2nd Edition (1970).Google Scholar
  13. 13.
    Yagii, K., and Maekawa, E., Nippon Gomu Kyokaishi, 40, 46 (1967).CrossRefGoogle Scholar
  14. 14.
    Landel, R. F., J. Colloid Sci, 12, 308 (1957).CrossRefGoogle Scholar
  15. 15.
    Mooney, M., J. Polymer Sci, 34, 599 (1959).CrossRefGoogle Scholar
  16. 16.
    Plazek, D. J., J. Polymer Sci, Part A-2, 4, 745 (1966).Google Scholar
  17. 17.
    Chausset, R., and Thirion, P., Physics of Non-Crystalline Solids, J. Prins (ed.), N. Holland Pub., Amsterdam (1965), p. 345.Google Scholar
  18. 18.
    Tsuge, K., Arenz, R. J., and Landel, R. F., “Finite Deformation Behavior of Elastomers: VI. Dependence of W on Degree of Crosslinking for SBR”, in Mechanical Behavior of Materials, The Society of Materials Science, Japan (1972), p. 433.Google Scholar
  19. 19.
    Smith, T. L., J. Polymer Sci, Part C, 16, 841 (1967).Google Scholar
  20. 20.
    Fedors, R. F., and Landel, R. F., “A Test of the Predictability of the Properties of Filled Systems”, presented at the AIAA Third Propulsion Joint Specialist Conference, Washington, D. C., AIAA Preprint No. 67–491 (July, 1967 ).Google Scholar
  21. 21.
    Rivlin, R. S., “Large Elastic Deformations” (and reference cited therein), in Rheology, Vol. I, F. Eirich (Ed.), Academic Press, New York (1956).Google Scholar
  22. 22.
    Green, A. E., and Zerna, W., Theoretical Elasticity,Oxford University Press, London 2nd Ed. (1954), 2nd Edition.Google Scholar
  23. 23.
    San Miguel, A., and Landel, R. F., Trans. Soc. Rheol, 10, 369 (1966).CrossRefGoogle Scholar
  24. 24.
    Becker, G. W., J. Polymer Sci, Part C, 16, 2893 (1967).Google Scholar
  25. 25.
    Obata, Y., Kawabata, S., and Kawai, H., J. Polymer Sci, 8, 903 (1970).Google Scholar
  26. 26.
    Valanis, K. C., and Landel, R. F., J. App!. Phys, 38, 2997 (1967).CrossRefGoogle Scholar
  27. 27.
    Smith, T. L., and Dickie, R. A., J. Polymer Sci, Part A-2, 7, 635 (1969).Google Scholar
  28. 28.
    Alfrey, T., Jr., “Equations of State for Elastomers”, in Proc. of Conf. on Polymer Structures and Mechanical Properties, U. S. Army Natick Laboratories, Natick, Massachusetts (1967).Google Scholar
  29. 29.
    Treloar, L.R.G., The Physics of Rubber Elasticity,Oxford University Press, London (1958), 2nd Edition.Google Scholar
  30. 30.
    Bueche, F., Kinzig, B. J., and Voen, C. J.,Polymer Letters, 3, 399 (1965).CrossRefGoogle Scholar
  31. 31.
    Furukawa, J., Nishioka, A., and Kotani, T., Polymer Letters, 8, 25 (1970).CrossRefGoogle Scholar
  32. 32.
    Halpin, J.C., J. Appl. Phys, 36, 2475 (1965).CrossRefGoogle Scholar
  33. 33.
    Smith, T. L., and Frederick, J. E., J. App!. Phys, 36, 2996 (1965).CrossRefGoogle Scholar
  34. 34.
    Fedors, R. F., and Lande!, R. F., Space Programs Summary 37–36, IV, 137 (December, 1965 ), Jet Propulsion Laboratory, Pasadena, California.Google Scholar
  35. 35.
    Bueche, F., and Halpin, J. C., J. Appl. Phys, 35, 36 (1964).CrossRefGoogle Scholar
  36. 36.
    Ninomiya, K., Nippon Gomu Kyokaishii, 41, 893 (1968); J. Soc. Mater. Sci. (Japan), 19, 282 (1970).Google Scholar
  37. 37.
    Fedors, R. F., and Lande!, R. F., Space Programs Summary 37–58, III, 180 (August, 1969 ), Jet Propulsion Laboratory, Pasadena, California.Google Scholar
  38. 38.
    Baranwal, K. D., Ph.D. Thesis, University of Akron (1967).Google Scholar
  39. 39.
    Healy, J. C., Ph.D. Thesis, University of Akron (1967).Google Scholar
  40. 40.
    Taylor, G. R., and Darin, S. R., J. Polymer Sei, 17, 511 (1955).CrossRefGoogle Scholar
  41. 41.
    Epstein, L. M., and Smith, R. P., Trans. Soc. Rheol, 2, 219 (1958).CrossRefGoogle Scholar
  42. 42.
    Smith, T. L., Proc, of the Fourth Internat. Congress on Rheol, E. H. Lee, (Ed.), Interscience, New York (1965), Part II, p. 525.Google Scholar
  43. 43.
    Fedors, R. F., Unpublished results.Google Scholar
  44. 44.
    Lake, G. J., and Lindley, P. B., J. App!. Polymer Sci, 8, 707 (1964).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • Robert F. Landel
    • 1
  • Robert F. Fedors
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations