Advertisement

On the Steady Propagation of a Crack in a Viscoelastic Sheet: Experiments and Analysis

  • W. G. Knauss

Abstract

In the following pages we present a continuum mechanical description of steady crack propagation in a linearly viscoelastic solid. The analysis is exact within the realm of linear viscoelasticity theory. Inasmuch as this colloquium deals with the deformation and fracture of high polymers from the molecular, microscopic, and macroscopic viewpoint, it is appropriate to recognize the complementary nature of the microscopic and the macro-continuum approach to polymer fracture. This remark seems essential because the later development contains assumptions which must appear rather gross to those who concern themselves with the microscopic or even atomistic aspect of the fracture process.

Keywords

Cohesive Zone Crack Velocity Creep Compliance Crack Speed Cohesive Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barenblatt, G. I., Entov, V. M., and Salganik, R. L., “Kinetics of Crack Propagation, General Considerations: Cracks Approaching Equilibrium Cracks”, Mech. Solids (Mekhan. Tverdogo Tela) 1 (5), English version p 82 (1966).Google Scholar
  2. 2.
    Barenblatt, G. I., Entov, V. M., and Salganik, R. L., “Kinetics of Crack Propagation: Conditions of Fracture and Long Term Strength”, ibid.,p 76.Google Scholar
  3. 3.
    Barenblatt, G. I., Entov, V. M., and Salganik, R. L., “Kinetics of Crack Propagation: A Note on the Rule of Summation of Damageabilities”, ibid., 2 (2), English version p 148 (1967).Google Scholar
  4. 4.
    Barenblatt, G. I., Entov, V. M., and Salganik, R. L., “Kinetics of Crack Propagation: Fluctuation Fracture”, ibid., 2, (1), English version p 122 (1967).Google Scholar
  5. 5.
    Barenblatt, G. I., Entov, V. M., and Salganik, R. L., “On the Influence of Vibrational Heating on the Fracture Propagation in Polymeric Materials”, Proceedings of the IUTAM Symposium in East Kilbride, June 25–28, 1968.Google Scholar
  6. 6.
    Barenblatt, G. I., Entov, V. M., and Salganik, R. L., “Some Problems of the Kinetics of Crack Propagation”, in Inelastic Behavior of Solids, Materials Science and Engineering Series, Kanninen, M. F., Adler, W. F., Rosenfield, A. R., and Jaffee, R. I. (Eds.), McGraw-Hill (1970).Google Scholar
  7. 7.
    Rivlin, R. S., and Thomas, A. G., “Rupture of Rubber, I. Characteristic Energy for Tearing”, J. Polymer Sci., 10 (3), 291 (1953).CrossRefGoogle Scholar
  8. 8.
    Thomas, A. G., “Rupture of Rubber, II. The Strain Concentration at an Incision”, J. Polymer Sci., 18, 177 (1955).CrossRefGoogle Scholar
  9. 9.
    Greensmith, H. W., and Thomas, A. G., “Rupture of Rubber, III. Determination of Tear Properties”, J. Polymer Sci., 18, 189 (1955).CrossRefGoogle Scholar
  10. 10.
    Greensmith, H. W., “Rupture of Rubber, IV. Tear Properties of Vulcanizates Containing Carbon Black”, J. Polymer Sci., 21, 175 (1956).CrossRefGoogle Scholar
  11. 11.
    Greensmith, H. W., Mullins, L., and Thomas, A. G., “Rupture of Rubber”, Trans. Soc. Rheology, 4, 179 (1960).CrossRefGoogle Scholar
  12. 12.
    Thomas, A. G., “Rupture of Rubber, VI. Further Experiments on the Tear Criterion”, J. Appl. Polymer Sci., 3 (8), 168 (1960).CrossRefGoogle Scholar
  13. 13.
    Greensmith, H. W., “Rupture of Rubber, VII. Effect of Rate Extension in Tensile Tests”, J. Appl. Polymer Sci., 3 (8), p 175 (1960).CrossRefGoogle Scholar
  14. 14.
    Mullins, L., “Rupture of Rubber, Part IX. Role of Hysteresis in the Tearing of Rubber”, Trans. Rubber Ind., 35, 213 (1959).Google Scholar
  15. 15.
    Greensmith, H. W., “Rupture of Rubber, VIII. Comparison of Tear and Tensile Rupture Measurements”, J. Appl. Polymer Sci., 3, 183 (1960).CrossRefGoogle Scholar
  16. 16.
    Greensmith, H. W., “Rupture of Rubber, XI. Tensile Rupture and Crack Growth in a Noncrystallizing Rubber”, J. Appl. Polymer Sci., 8, 1113 (1964).CrossRefGoogle Scholar
  17. 17.
    Knauss, W. G., “The Time Dependent Fracture of Viscoelastic Materials”, Proceedings of the First International Conference on Fracture, (1965), Vol. 2, p 1139 See also Ph.D. Thesis, California Institute of Technology, Pasadena, California, 1963.Google Scholar
  18. 18.
    Knauss, W. G., “Stable and Unstable Crack Growth in Viscoelastic Media”, Trans. Soc. Rheology, 13 (3), 291 (1969).CrossRefGoogle Scholar
  19. 19.
    Mueller, H. K., and Knauss, W. G., “Crack Propagation in a Linearly Viscoelastic Strip”, J. Appl. Mech., 38, Series E (No. 2 ), 483 (1971).Google Scholar
  20. 20.
    Mueller, H. K., and Knauss, W. G., `The Fracture Energy and Some Mechanical Properties of a Polyurethane Elastomer“, Trans. Soc. Rheology, 15 (2), 217 (1971).CrossRefGoogle Scholar
  21. Knauss, W. G., “Delayed Failure — the Griffith Problem for Linearly Viscoelastic Materials”, Intern. J. Fracture Mech.,6 (1), 7 (1970). See also, Fracture 1969,Proceedings of the International Conference on Fracture, Brighton (1969), p 894.Google Scholar
  22. 22.
    Kostrov, B. V., and Nikitin, L. V., “Some General Problems of Mechanics of Brittle Fracture”, Archiwum Mechaniki Stosowanej, 22 (6), English version p. 749 (1970).Google Scholar
  23. 23.
    Marshall, G. P., Culver, L. E., and Williams, J. G., “Crack and Craze Propagation in Polymers: A Fracture Mechanics Approach. I. Crack Growth in Polymethyl Methacrylate in Air”, in Plastics and Polymers, The Plastics Institute Transactions and Journal, Headington Hill Hall, Oxford (1969), p 75.Google Scholar
  24. 24.
    Marshall, G. P., Culver, L. E., and Williams, J. G., The Growth of Cracks and Crazes in Polystyrene: A Fracture Mechanics Approach, Imperial College of Science and Technology, Mechanical Engineering Department, London (1971).Google Scholar
  25. 25.
    Prandtl, L., “Ein Gedankenmodell fur den Zerreissvorgang spröder Körper”, ZAMM, 13, 129 (1933). See also Ludwig Prandtl, Gesammelte Abhandlungen, Erster Teil, Springer (1961).Google Scholar
  26. 26.
    Williams, M. L., “The Fracture of Viscoelastic Material”, in Fracture of Solids, Drucker and Gilman (Eds). Interscience Publishers (1963), p 157.Google Scholar
  27. 27.
    Williams, M. L., “The Kinetic Energy Contribution to Fracture Propagation in a Linearly Viscoelastic Material”, Intern. J. Fracture Mech., 4 (1), 69 (1968).Google Scholar
  28. 28.
    Williams, M. L., “Initiation and Growth of Viscoelastic Fracture”, ibid., 1 (4), 292 (1965).Google Scholar
  29. 29.
    Wnuk, M. P., and Knauss, W. G., “Delayed Fracture in Viscoelastic-plastic Solids”, Intern. J. Solids Structures, 6, 995 (1970).CrossRefGoogle Scholar
  30. 30.
    Wnuk, M. P., “Energy Criterion for Initiation and Spread of Fracture in Viscoelastic Solids”, South Dakota State University, Engineering Experiment Station Bulletin, No. 7 (April, 1968 ).Google Scholar
  31. 31.
    Wnuk, M. P., “Effects of Time and Plasticity on Fracture”, Brit. J. Appl. Phys., Series 2, 2, 1245 (1969).Google Scholar
  32. Knauss, W. G., “The Mechanics of Polymer Fracture”, Appl. Mech. Reviews (January, 1973).Google Scholar
  33. 33.
    Jones, W. J., North American Rockwell Corp., Rocketdyne Division, McGregor, Texas, personal communication.Google Scholar
  34. 34.
    Williams, M. L., Landel, R. F., and Ferry, J. D., “The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glassforming Liquids”, J. Am. Chem. Soc., 77, 3701–3707 (1955).CrossRefGoogle Scholar
  35. 35.
    Kambour, R. P., “Mechanism of Fracture in Glassy Polymers. I. Fracture Surfaces in Poly-methyl methacrylate”, J. Polymer Sci., Part A, 3, 1713 (1965).Google Scholar
  36. 36.
    Kambour, R. P., “Mechanism of Fracture in Glassy Polymers, II. Survey of Crazing Response During Crack Propagation in Several Polymers”, J. Polymer Sci., Part A-2, 4, 17 (1966).CrossRefGoogle Scholar
  37. 37.
    Kambour, R. P., “Mechanism of Fracture in Glassy Polymers, III. Direct Observation of the Craze Ahead of the Propagating Crack in Poly(methyl methacrylate) and Polystyrene”, J. Polymer Sci., Part A-2, 4, 349 (1966).CrossRefGoogle Scholar
  38. 38.
    Kaelble, D. H., Physical Chemistry of Adhesion, Interscience Publishers, John Wiley and Sons, New York (1971).Google Scholar
  39. 39.
    McClintock, F. A., Plasticity Aspects of Fracture, in Fracture, an Advanced Treatise, Liebowitz, H. (Ed.), Academic Press, New York (1971), Vol 3, p 47.Google Scholar
  40. 40.
    Broek, D., A Study on Ductile Fracture,National Lucht-en Ruimtevaartlaboratorium, NLR TR 71021 U, The Netherlands.Google Scholar
  41. 41.
    Dugdale, D. S., “Yielding of Steel Sheets Containing Slits”, Jour. Mech. Phys. Solids, 8, 100 (1960).CrossRefGoogle Scholar
  42. 42.
    Barenblatt, G. I., `The Mathematical Theory of Equilibrium Cracks in Brittle Fracture“, in Advances in Applied Mechanics, Academic Press (1962), Vol. 7, p 55.Google Scholar
  43. 43.
    England, A. H., Complex Variable Methods in Elasticity, Wiley-Interscience, New York (1971).Google Scholar
  44. 44.
    Rice, J. R., Mathematical Analysis in the Mechanics of Fracture, Liebowitz, H. (Ed.), Academic Press, New York (1971), Vol 2, p 192.Google Scholar
  45. 45.
    Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, J.R.M. Radok Transl.; Noordhoff Ltd., Groningen (1963).Google Scholar
  46. 46.
    Lake, G. J., and Thomas, A. G., “The Strength of Highly Elastic Materials”, Proc. Roy. Soc., London, Series A, Math. and Phys. Sci., 300 (1460), 108 (1967).CrossRefGoogle Scholar
  47. 47.
    Bueche, F., and Halpin, J. C., “Molecular Theory for the Tensile Strength of Gum Elastomers”, J. Appl. Phys., 35 (1), 36 (1964).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • W. G. Knauss
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations