Advertisement

Plastic Deformation of Crystalline Polymers in Solid-State Extrusion through a Tapered Die

  • M. Takayanagi

Abstract

A theoretical analysis based on the free-body and upper-bound approaches for the solid-state extrusion of crystalline polymers is developed by taking into account their remarkable strain-hardening behavior. The strain-hardening process in uniaxial extension is formulated in a generalized form. The calculations are found to compare favorably with observed extrusion pressures as a function of area reduction of die for linear polyethylene, polypropylene, and nylon 6. The critical area reduction for smooth extrusion is predictable in terms of the unfoldability parameter of folded molecules in lamellar crystals, the strain-hardening parameter, the initial yield stress, and the tenacity of fibers.

Keywords

True Strain True Stress Crystalline Polymer Area Reduction Extrusion Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Imada, K., Yamamoto, T., Shigematsu, K., and Takayanagi, M., J. Mater. Sci., 6, 537 (1971).CrossRefGoogle Scholar
  2. 2.
    Sachs, G., Z. angew. Math. u. Mech., 7, 235 (1927).CrossRefGoogle Scholar
  3. 3.
    Maruyama, S., Imada, K., and Takayanagi, M., Int. J. Polymeric Materials, 1, 211 (1972).CrossRefGoogle Scholar
  4. 4.
    Nakamura, K., Imada, K., and Takayanagi, M., Int. J. Polymeric Materials, 2, 71 (1972).CrossRefGoogle Scholar
  5. 5.
    Takayanagi, M., Imada, K., Maruyama, S., and Nakamura, K., paper presented at the 6th International Congress on Rheology, Lyon, France, September, 1972.Google Scholar
  6. 6.
    Refer to G. Dieter, Mechanical Metallurgy, McGraw-Hill, New York (1961), p. 247.Google Scholar
  7. 7.
    Korber, F., and Eichinger, A., Mitt. Kaiser-Wilhelm-Institut Eisenforschung, 22, 57 (1940).Google Scholar
  8. Karman, Th. von: Z. Angew. Math. Mechanik,1925.Google Scholar
  9. 9.
    Avitzur, B., Metal Forming Processes and Analysis, McGraw-Hill, 1968.Google Scholar
  10. 10.
    Prager, W., and Hodge, P. G., Theory of Perfectly Plastic Solids, John Wiley, New York (1951).Google Scholar
  11. 11.
    Imada, K., Yamamoto, T., Kanekiyo, K., and Takayanagi, M., Zairyo, 20, 606 (1971); Rep. Progr. Polym. Phys. Japan, 14, 393 (1971); Proceedings of the 1971 International Conference on Mechanical Behavior of Materials, (1971), Vol 3, p 476; Int. J. Polymeric Materials, 2 89 (1973).CrossRefGoogle Scholar
  12. 12.
    Maruyama, S., Imada, K., and Takayanagi, M., Int. J. Polymeric Materials, 2, 105 (1973).CrossRefGoogle Scholar
  13. 13.
    Rheology Handbook, Society of Polymer Science Japan (Ed.), Maruzen Co., Tokyo (1962), p 276.Google Scholar
  14. 14.
    Gregory, R. B., SPE J, 25, 55 (1969).Google Scholar
  15. 15.
    Hirakawa, S., and Takemura, T., Japan. J. Appl. Phys., 7, 814 (1968).CrossRefGoogle Scholar
  16. 16.
    Rheology Handbook, Society of Polymer Science, Japan (Ed.), Maruzen, Tokyo (1965), p 353.Google Scholar
  17. 17.
    Anderegg, F. O., Ind. Eng. Chem., 31, 290 (1939).CrossRefGoogle Scholar
  18. 18.
    Hirakawa, S., Matsushige, K., and Takemura, T., Tech. Rep. Kyushu University, 44, 712 (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • M. Takayanagi
    • 1
  1. 1.Faculty of EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations