Advertisement

Time-Temperature Superposition in Heterophase Block Copolymers

  • A. Kaya
  • G. Choi
  • M. C. Shen

Abstract

The viscoelastic behavior of a styrene-butadiene-styrene block copolymer cast from several different solvents was studied in order to examine the validity of the time-temperature superposition principle in heterophase polymers. It is found that stress-relaxation isotherms over a wide temperature range can be easily superposed into smooth master curves. The master curves compare favorably with other mechanical data determined at long times and at high frequencies. The shift factors used in superposition can be rationalized by an additive model. However, it is pointed out that this apparent thermorheological simplicity is strictly valid only in the region where one of the relaxation mechanisms dominates. Consequently, only those portions of the master curve that meet this criterion are expected to be useful. Dynamic mechanical data illustrating the effect of multiple relaxations are presented.

Keywords

Block Copolymer Master Curve Methyl Ethyl Ketone Glassy Phase Shift Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tobolsky, A. V., Properties and Structure of Polymers, Wiley, New York (1960).Google Scholar
  2. 2.
    Ferry, J. D., Viscoelastic Properties of Polymers, 2nd Ed., Wiley, New York (1970).Google Scholar
  3. 3.
    Fesko, D. G., and Tschoegl, N. W., J. Polymer Sci., Part C, 35, 51 (1971); Int. J. Polym. Mat., in press.Google Scholar
  4. 4.
    Beecher, J. F., Marker, L., Bradford, R. D., and Aggarwal, S. L., J. Polymer Sci., Part C, 26, 163 (1969).Google Scholar
  5. 5.
    McCrum, N. G., and Morris, E. L., Proc. Roy. Soc., A281, 258 (1964).CrossRefGoogle Scholar
  6. 6.
    Jamieson, R. T., Kaniskin, V. A., Ouano, A. C., and Shen, M., Advances in Polymer Science and Engineering, K. D. Pae, D. R. Morrow, and Y. Chen (Eds.), Plenum, New York (1972), p. 163.CrossRefGoogle Scholar
  7. 7.
    Rusch, K. C., J. Macromol. Sci., B2, 179 (1968).CrossRefGoogle Scholar
  8. 8.
    Shen, M., Circlin, E. H., and Kaelble, D. H., in Colloidal and Morphological Behavior of Block and Graft Copolymers, G. E. Molau (Ed.), Plenum, New York (1971), p 307.CrossRefGoogle Scholar
  9. 9.
    Ferry, J. D., Child, W. C., Zand, R., Stern, D. M., Williams, W. L., and Landel, R. F., J. Colloid Sci., 12, 53 (1957).CrossRefGoogle Scholar
  10. 10.
    Kaniskin, V. A., Kaya, A., Long, A., and Shen, M., J. Appl. Polymer Sci., in press.Google Scholar
  11. 11.
    Shen, M., and Kaelble, D. H., Polymer Letters, 8, 149 (1970).CrossRefGoogle Scholar
  12. 12.
    Lim, C. K., Cohen, R. E., and Tschoegl, N.W., Advan. Chem. Series, 99, 397 (1971);CrossRefGoogle Scholar
  13. Cohen, R., and Tschoegl, N. W., Int. J. Polym. Mat., 2, 49 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • A. Kaya
    • 1
  • G. Choi
    • 1
  • M. C. Shen
    • 1
  1. 1.Department of Chemical EngineeringUniversity of CaliforniaBerkeleyUSA

Personalised recommendations