Rate Processes in the Plastic Deformation of Polymers

  • J. C. M. Li
  • C. A. Pampillo
  • L. A. Davis


Some recent efforts in the application of rate theory to the plastic deformation of polymers are reported. Concepts such as the activation strain volume are defined. The volumetric effects during the deformation of polymers are discussed in detail. Evidences are provided to show that plastic deformation is not a near-equilibrium process under usual conditions. The shear-strain volume is found to decrease with shear stress, obeying a general correlation for all materials. The nature of simultaneous processes is described briefly and applied to the transition region so as to map out domains for individual processes. Work hardening in tension is formulated by assuming a certain shear stress needed for sliding between molecules and the gradual orientation of chain directions toward the tensile axis.


Flow Stress Activation Volume Slip Line Tensile Axis Chain Direction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Einstein, A., Ann. Phys., Lpz. (4), 17, 549 (1905).Google Scholar
  2. 2.
    See Dorn, J. E., Creep and Recovery, American Society for Metals (1957), p 255.Google Scholar
  3. 3.
    See Li, J.C.M., in Dislocation Dynamics,A. R. Rosenfield, et al. (Eds.), McGraw-Hill, New York, N.Y. (1968), p 87.Google Scholar
  4. 4.
    Becker, R., Z. Physik., 26, 919 (1925); Z. Techn. Phys., 7, 547 (1926).Google Scholar
  5. 5.
    Sherby, O. D., and Dorn, J. E., J. Mech. Phys. Solids, 6, 145 (1958).CrossRefGoogle Scholar
  6. 6.
    Li, J.C.M., J. Appl. Phys., 42, 4543 (1971).CrossRefGoogle Scholar
  7. 7.
    Pampillo, C. A., and Davis, L. A., J. Appl. Phys., 42, 4674 (1971).CrossRefGoogle Scholar
  8. 8.
    Alksne, K. 1., Ainbinder, S. B., and Slonimskii, G. L., Mekhan. Polimerov Akad. Nauk Latv. SSR, 2, 355 (1966).Google Scholar
  9. 9.
    Ainbinder, S. B., Laka, M. G., and Maidrs, I. Yu., Mekhan. Polimerov Akad. Nauk. Latv. SSR, 1, 65 (1965).Google Scholar
  10. 10.
    Litt, M. H., and Tobolsky, A. V., J. Macromol. Sci. (Phys.) 1, 433 (1967).CrossRefGoogle Scholar
  11. 11.
    Litt, M. H., Koch, P. J., and Tobolsky, A. V., J. Macromol. Sci. (Phys.), 1, 587 (1967).CrossRefGoogle Scholar
  12. 12.
    Sardar, D., Radcliffe, S. V., and Baer, E., Polymer Eng. Sci., 8, 290 (1968).CrossRefGoogle Scholar
  13. 13.
    Sternstein, S. S., Ongchin, L., and Silverman, A., Applied Polymer Symposia, No. 7, 175 (1968).Google Scholar
  14. 14.
    Davis, L. A., and Pampillo, C. A., J. Appl. Phys., 42, 4659 (1971).CrossRefGoogle Scholar
  15. 15.
    Pampillo, C. A., and Davis, L. A., J. Appl. Phys., 43 (1972).Google Scholar
  16. 16.
    Balasubramanian, N., and Li, J.C.M., J. Materials Sci., 5, 434 (1970).CrossRefGoogle Scholar
  17. 17.
    Wu, Wen-Li, “Plastic Deformation of Polymers”, MIT Thesis (1972).Google Scholar
  18. 18.
    Gilman, J. J., in Dislocation Dynamics, A. R. Rosenfield, et al. (Eds.), McGraw-Hill, New York, N.Y. (1968), p 3.Google Scholar
  19. 19.
    Brown, N., Duckett, R. A., and Ward, I. M., J. Phys. D: Appl. Phys., 1, 1369 (1968).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1973

Authors and Affiliations

  • J. C. M. Li
    • 1
  • C. A. Pampillo
    • 2
  • L. A. Davis
    • 2
  1. 1.Department of Mechanical and Aerospace SciencesUniversity of RochesterRochesterUSA
  2. 2.Materials Research CenterAllied Chemical CorporationMorristownUSA

Personalised recommendations