Advertisement

Affinity Chromatography, Principles and Applications

  • Indu Parikh
  • Pedro Cuatrecasas
Part of the Biological Separations book series (BIOSEP)

Abstract

Since the time the term “affinity chromatography” was first coined a few years ago (Cuatrecasas et al., 1968), the basic idea has been widely exploited as a powerful tool for the separation and purification of a wide variety of biological macromolecules. Its effectiveness for purification rests on the selectivity of interaction, and thus of adsorption, of a biological macromolecule on an affinity adsorbent which is prepared by the covalent immobilization of a specific ligand on a solid polymeric matrix. In the case of an enzyme, an appropriate reversible competitive inhibitor is immobilized. Substrates or cofactors of the enzyme may also be used under selected experimental conditions (Cuatrecasas, 1970; Cuatrecasas and Anfinsen, 1971). The desorption (i.e., elution) of the macromolecule from the affinity column is achieved either by perturbing the interaction between the macromolecule and the adsorbent, or by including a competing ligand in the eluting buffer. For obvious reasons, the design of a new affinity-chromatographic system for a given macromolecule requires individual attention in the selection and attachment of the ligand as well as selection of the buffer conditions for the adsorption and desorption processes. In principle, virtually any specifically interacting system composed of two or more species can be approached by this method.

Keywords

Affinity Chromatography Affinity Column Cyanogen Bromide Affinity Adsorbent Plant Lectin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair, W. L. and Kornfield, S. (1974) J. Biol. Chem. 249: 4696.Google Scholar
  2. Agraval, B. B. L. and Goldstein, I. J. (1967) Biochim. Biophys. Acta 147: 262.CrossRefGoogle Scholar
  3. Ahmed, A., Bishayee, S., and Bachhawat, B. K. (1973) Biochem. Biophys. Res. Commun. 53730.CrossRefGoogle Scholar
  4. Allan, D. Auger, J., and Crumpton, M. J. (1972) Nature New Biol. 236: 23.Google Scholar
  5. Andrews, P. (1970) FEBS Lett. 9: 297.PubMedCrossRefGoogle Scholar
  6. Andrews, P., Kitchen, B. J., and Winzor, D. J. (1973) Biochem. J. 135: 897.Google Scholar
  7. Ashani, Y. and Wilson, I. B. (1972) Biochim. Biophys. Acta 276: 317.Google Scholar
  8. Bautz, E. K. F. and Hall, B. D. (1962) Proc. Nat. Acad. Sci. USA 48: 400.PubMedCrossRefGoogle Scholar
  9. Barker, R., Olsen, K. W., Shaper, J. H., and Hill, R. L. (1972) J. Biol. Chem. 247: 7135.PubMedGoogle Scholar
  10. Bloch, R. and Burger, M. M. (1974) Biochem. Biophys. Res. Commun. 58: 13.PubMedCrossRefGoogle Scholar
  11. Blumberg, P. M. and Strominger, J. L. (1972) Proc. Nat. Acad. Sci. USA 69: 3751.PubMedCrossRefGoogle Scholar
  12. Bohme, H. J., Kopperschlager, G., Schulz, J., and Hofmann, E. (1972) J. Chromatogr. 69: 209.PubMedCrossRefGoogle Scholar
  13. Brocklehurst, K. and Little, G. (1973) Biochem. J. 133: 67.PubMedGoogle Scholar
  14. Chauvet, J. and Acher, R. (1973) Biochimie 55: 1323.PubMedCrossRefGoogle Scholar
  15. Cuatrecasas, P. (1970) J. Biol. Chem. 245: 3059.PubMedGoogle Scholar
  16. Cuatrecasas, P. (1972) Proc. Nat. Acad. Sci. USA 69: 1277.PubMedCrossRefGoogle Scholar
  17. Cuatrecasas, P. (1973) J. Biol. Chem. 248: 3528.PubMedGoogle Scholar
  18. Cuatrecasas, P. and Anfinsen, C. B. (1971) Ann. Rev. Biochem. 40: 259.PubMedCrossRefGoogle Scholar
  19. Cuatrecasas, P. and Ilbano, G. (1971) Biochem. Biophys. Res. Commun. 44: 178.PubMedCrossRefGoogle Scholar
  20. Cuatrecasas, P. and Parikh, I. (1974) in Methods in Enzymology, Vol. 34 (Jacoby and Wilchek, eds., pp. 653 – 670, Academic Press, New York.Google Scholar
  21. Cuatrecasas, P., Wilchek, M., and Anfinsen, C. B. (1968) Proc. Nat. Acad. Sci. USA 61: 636.PubMedCrossRefGoogle Scholar
  22. Cuatrecasas, P., Parikh, I., and Hollenberg, M. D. (1973) Biochemistry 12: 4253.PubMedCrossRefGoogle Scholar
  23. Davey, M. W., Huang, J. W., Sulkowski, E., and Carter, W. A. (1974) J. Biol. Chem. 249: 6354.PubMedGoogle Scholar
  24. Dean, P. D. G., Craven, D. B., Harvey, M. J., and Lowe, C. R. (1974) in Immobilized Biochemicals and Affinity Chromatography (Dunlap, ed.) pp. 99 - 121, Plenum Press, New York.Google Scholar
  25. Dorner, F., Scriba, M., and Weil, R. (1973) Proc. Nat. Acad. Sci. USA 70: 1981.PubMedCrossRefGoogle Scholar
  26. Dowson, J. R., Silver, J., Sheppard, L. B., and Amos, D. B. (1974) J. Immunol. 112: 1190.Google Scholar
  27. Doyle, R. J., Birdsell, D. C., and Young, F. E. (1973) Prep. Biochem. 3: 13.PubMedCrossRefGoogle Scholar
  28. Dufau, M. L., Tsuruhara, T., and Catt, K. J. (1972) Biochem. Biophys. Acta 278: 281.PubMedCrossRefGoogle Scholar
  29. Dunn, B. M. and Chaiken, L. M. (1974) Proc. Nat. Acad. Sci. USA 71: 23 – 82.Google Scholar
  30. Easterday, R. L. and Easterday, I. M. (1974) in Immobilized Biochemicals and Affinity Google Scholar
  31. Chromatography (Dunlap, ed.) pp. 123-133, Plenum Press, New York. Fannin, F. F. and Diedrich, D. F. (1973) Arch. Biochem. Biophys. 158: 919.Google Scholar
  32. Feinstein, G. (1970) Biochim. Biophys. Acta 214: 224.PubMedCrossRefGoogle Scholar
  33. Feldman, K., Ziesel, H., and Helmreich, E. (1972) Proc. Nat. Acad. Sci. USA 69: 2278.CrossRefGoogle Scholar
  34. Findlay, J. B. C. (1974) J. Biol. Chem. 249: 4398.PubMedGoogle Scholar
  35. Foster, R. J. and Ryan, C. R. (1974) Biochemistry 13: 132.PubMedCrossRefGoogle Scholar
  36. Fressinaud, P. H., Corval, P., Frenaz, J. P., and Menard, J. (1973) Biochim. Biophys. Acta 317: 572.PubMedCrossRefGoogle Scholar
  37. Gilham, P. T. (1974) in Immobilized Biochemicals and Affinity Chromatography (Dunlap, ed.) pp. 173 – 185, Plenum Press, New York.Google Scholar
  38. Gordon, J. A. Blumberg, S., Lis, H., and Sharon, N. (1972) FEBS Lett. 24: 193.PubMedCrossRefGoogle Scholar
  39. Graves, D. J. and Wu, Yun-Tai (1974) in Methods in Enzymology, Vol. 34 (Jacoby and Wilchek, eds.) pp. 140 – 163, Academic Press, New York.Google Scholar
  40. Green, M. (1973) Biochem. J. 133: 698.PubMedGoogle Scholar
  41. Green, M. and Torns, E. J. (1973) Biochem. J. 133: 687.PubMedGoogle Scholar
  42. Hayman, M. J. and Crumpton, M. J. (1972) Biochem. Biophys. Res. Commun. 47: 923.PubMedCrossRefGoogle Scholar
  43. Hayman, M. J., Skehel, J. J., and Crumpton, M. J. (1973) FEBS Lett. 29: 185.PubMedCrossRefGoogle Scholar
  44. Heiman, M. and Givol, D. (1971) Biochem. J. 125: 971.Google Scholar
  45. Hofstee, B. H. J. (1973) Anal. Biochem. 52: 430.PubMedCrossRefGoogle Scholar
  46. Javid, J. and Liang, J. (1973) J. Lab. Clin. Med. 82: 991.PubMedGoogle Scholar
  47. Kato, I. and Anfinsen, C. B. (1969) J. Biol. Chem. 244: 1004.Google Scholar
  48. Kenyon, A. J., Gander, J. E., Lopez, C., and Good, R. A. (1973) Science 179: 187.PubMedCrossRefGoogle Scholar
  49. Klein, M. and Mihaesco, C. (1973) Biochem. Biophys. Res. Commun. 52: 774.PubMedCrossRefGoogle Scholar
  50. Konda, H., Hayashi, H., and Mikashi, K. (1972) J. Biochem. 72: 759.Google Scholar
  51. Kristiansen, T. (1974) Biochim. Biophys. Acta 338: 246.CrossRefGoogle Scholar
  52. Landman, A. D. and Dakshinamurti, K. (1973) Anal. Biochem. 56: 191.PubMedCrossRefGoogle Scholar
  53. LeVine, D., Kaplan, M. J., and Greenaway, P. J. (1972) Biochem. J. 129: 847.Google Scholar
  54. Litman, R. M. 1968. J. Biol. Chem. 243: 6222.PubMedGoogle Scholar
  55. Lornitzo, F. A., Qureshi, A. A., and Porter, J. W. (1974) J. Biol. Chem. 249: 1654.Google Scholar
  56. Lotan, R., Gussin, A. E. S., Lis, H., and Sharon, N. (1973) Biochem. Biophys. Res. Commun. 52: 656.PubMedCrossRefGoogle Scholar
  57. Mosbach, K., Guilford, H., Ohlsson, R., and Scott, M. (1972) Biochem. J. 127: 625.PubMedGoogle Scholar
  58. Motsumoto, I. and Osawa, T. (1972) Biochem. Biophys. Res. Commun. 46: 1810.CrossRefGoogle Scholar
  59. Murthy, R. J. and Hercz, A. (1973) FEBS Lett. 32: 243.PubMedCrossRefGoogle Scholar
  60. Nicolson, G. L., Blaustein, J., and Etzler, M. E. (1974) Biochemistry 13: 196.PubMedCrossRefGoogle Scholar
  61. Norden, A. G. W. and O’Brien, J. S. (1974) Biochem. Biophys. Res. Commun. 56: 193.PubMedCrossRefGoogle Scholar
  62. Ohlsson, K. and Tegner, H. (1973) Biochim. Biophys. Acta 317: 328.PubMedCrossRefGoogle Scholar
  63. Ontjes, D. A. and Anfinsen, C. B. (1969) J. Biol. Chem. 244: 6316.PubMedGoogle Scholar
  64. Parikh, I., Corley, L., and Anfinsen, C. B. (1971) J. Biol. Chem. 246: 7392.PubMedGoogle Scholar
  65. Parikh, I., March, S., and Cuatrecasas, P. (1974) in Methods in Enzymology, Vol. 34 (Jacoby and Wilchek, eds.) pp. 77 – 102, Academic Press, New York.Google Scholar
  66. Parikh, I., Sica, V., Nola, E., Puca, G. A., and Cuatrecasas, P. (1974) in Methods in Enzymology, Vol. 34 (Jacoby and Wilchek, eds.) pp. 670 – 688, Academic Press, New York.Google Scholar
  67. Parks, J. S., Gottesman, M., Shimada, K., Weisberg, R. A., Perlman, R. L., and Pastan, I. (1971) Proc. Nat. Acad. Sci. USA 68: 1891.PubMedCrossRefGoogle Scholar
  68. Pass, L., Zimmer, T. L., and Loland, S. G. (1973) Eur. J. Biochem. 40: 43.PubMedCrossRefGoogle Scholar
  69. Poonian, M. S., Schlabach, A. J., and Weissbach, A. (1971) Biochemistry 10: 424.Google Scholar
  70. Poretz, R. D., Riss, H., Timberlake, J. W., and Chien, S. (1974) Biochemistry 13: 250.Google Scholar
  71. Pradelles, P., Margot, J. L., and Fromageot, P. (1972) FEBS Lett. 26: 189.Google Scholar
  72. Robberson, D. L. and Davison, N. (1972) Biochemistry 11: 533.Google Scholar
  73. Robinson, N. C., Tye, R. W., Neurath H., and Walsh, K. A. (1971) Biochemistry 14: 2743.Google Scholar
  74. Rosenberg, M., Wiebers, D. L., and Gilham, P. T. (1972) Biochemistry 11: 3623.PubMedCrossRefGoogle Scholar
  75. Rush, R. A., Thomas, P. E., Kindler, S. H., and Udenfriend, S. (1974) Biochem. Biophys. Res. Commun. 57: 1301.Google Scholar
  76. Schmit, J. C., Artz, S. W., and Zalkin, H. (1970) J. Biol. Chem. 245: 4019.Google Scholar
  77. Shaltiel, S., 1974. in Methods in Enzymology (Jacoby and Wilchek, eds.) pp. 126 – 140, Academic Press, New York.Google Scholar
  78. Sica, V., Parikh, I., Nola, E., Puca, G. A., and Cuatrecasas, P. (1973) J. Biol. Chem. 248: 6543.PubMedGoogle Scholar
  79. Sluytermann, L. A. E. and Wijdenes, J. (1970) Biochim. Biophys. Acta 200: 593.CrossRefGoogle Scholar
  80. Solling, H. and Wang, P. (1973) Biochem. Biophys. Res. Commun. 53: 1234.PubMedCrossRefGoogle Scholar
  81. Steers, E., Cuatrecasas, P., and Pollard, H. (1971) J. Biol. Chem. 246: 196.PubMedGoogle Scholar
  82. Steineman, A. and Stryer, L. (1973) Biochemistry 12: 1499.CrossRefGoogle Scholar
  83. Tornino, A. and Paigen, K. (1970) in The Lactose Operon (Beckwith and Zipser, eds.) p. 233, Cold Spring Harbor, New York.Google Scholar
  84. Trayer, I. P. and Hill, R. L. 1971. J. Biol. Chem. 246: 6666.PubMedGoogle Scholar
  85. Venis, M. A. (1971) Proc. Nat. Acad. Sci. USA 68: 1824.Google Scholar
  86. Wagner, A. F., Bugianesi, R. L., and Shen, T. Y. (1971) Biochem. Biophys. Res. Commun. 45: 184.PubMedCrossRefGoogle Scholar
  87. Wankat, P. (1974) Analyt. Chem. 46: 1400.CrossRefGoogle Scholar
  88. Wilchek, M. (1972) Analyt. Biochem. 49: 572.PubMedCrossRefGoogle Scholar
  89. Wilchek, M. and Miron, T. (1972) Biochem. Biophys. Acta 278: 1.PubMedCrossRefGoogle Scholar
  90. Wilcox, G., Clernatson, K. J., Santi, D. V., and Engelberg, E. (1971) Proc. Nat. Acad. Sci. USA 68: 3145.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • Indu Parikh
    • 1
  • Pedro Cuatrecasas
    • 1
  1. 1.Departments of Pharmacology and Experimental Therapeutics and MedicineThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations