Skip to main content

Structural Evidence for Solutions from EXAFS Measurements

  • Chapter
EXAFS Spectroscopy

Abstract

Physical evidence for the structure of solutions has been obtained by x-ray scattering,1,2,3,4 neutron scattering,5,6,7,8 Raman scattering,9,10 transport measurements,11 and NMR12 techniques. In addition, extended x-ray absorption fine structure spectroscopy (EXAFS spectroscopy) has been applied to this problem. It is the sensitivity to local structure that makes EXAFS especially suitable for systems like this, for which no long range order is expected. Also, the element specificity of EXAFS means that the radial distribution functions deduced from EXAFS analysis contain only the relationship between atoms of the x-ray absorbing element and its neighbors. In contrast, neutron and x-ray scattering methods result in an average correlation function for the sample as a whole, unless special techniques such as isotopic substitution in the scattering of neutrons6 or anomalous scattering of x-rays13 are employed to distinguish the correlations between specific pairs of elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Ohtaki, T. Yamaguchi, and M. Maeda, Bull. Chem. Soc. Japan. 49, 701 (1976).

    Article  Google Scholar 

  2. W. Bol, G. J. A. Gerrits, and C. L. van Panthaleon, J. Appl. Crystallogr. 3, 486 (1970).

    Article  Google Scholar 

  3. R. Caminiti, G. Licheri, G. Piccaluga, and G. Pinna, J. Chem. Phys. 65, 3134 (1976).

    Article  Google Scholar 

  4. R. Caminiti, G. Licheri, G. Piccaluga, and G. Pinna, Disc. Faraday Soc. 64, 62 (1977).

    Article  Google Scholar 

  5. R. H. Howe, W. S. Howells, and J. E. Enderby, J. Phys. C7, L111 (1974).

    Google Scholar 

  6. A. K. Soper, G. W. Neilson, J. E. Enderby, and R. A. Howe, J. Phys. C 10, 1793 (1977).

    Article  Google Scholar 

  7. G. W. Neilson and J. E. Enderby, J. Phys. C11, L625 (1978).

    Google Scholar 

  8. G. Cubiotti, F. Sachetti, and M. C. Spinelli, Solid State Commun. 27, 349 (1978).

    Article  Google Scholar 

  9. M. P. Fontana, G. Maisano, P. Migliardo, and F. Wanderlingh, Solid State Commun. 23, 489 (1977).

    Article  Google Scholar 

  10. M. P. Fontana, G. Maisano, P. Migliardo, and F. Wanderlingh, J. Chem. Phys. 69, 676 (1978).

    Article  Google Scholar 

  11. G. Maisano, P. Migliardo, and F. Wanderlingh, J. Chem. Phys. 68, 5594 (1978).

    Article  Google Scholar 

  12. J. W. Neely and Robert E. Connick, J. Am. Chem. Soc. 94, 3419 (1972).

    Article  Google Scholar 

  13. H. Winick and A. Bienenstock, Ann. Rev. Nucl. Part. Sci. 28, 33 (1978).

    Article  Google Scholar 

  14. P. Eisenberger, B. M. Kincaid, Chem. Phys. Lett. 36, 134 (1975).

    Article  Google Scholar 

  15. D. R. Sandstrom, H. W. Dodgen, and F. W. Lytle, J. Chem. Phys. 67, 473 (1977).

    Article  Google Scholar 

  16. A. Fontaine, P. Lagarde, D. Raoux, M. P. Fontana, G. Maisano, P. Migliardo, and F. Wanderlingh, Phys. Rev. Lett. 41, 504 (1978).

    Article  Google Scholar 

  17. T. I. Morrison, A. H. Reis, G. S. Knapp, F. Y. Fradin, H. Chen, and T. E. Klippert, J. Am. Chem. Soc. 100, 3262 (1978).

    Article  Google Scholar 

  18. D. R. Sandstrom, J. Chem. Phys. 71, 2381 (1979).

    Article  Google Scholar 

  19. H. W. Huang, S. H. Hunter, W. K. Warburton, and S. C. Moss, Science 204, 191 (1979).

    Article  Google Scholar 

  20. P. Lagarde, A. Fontaine, D. Raoux, A. Sadoc, and P. Migliardo, Private Communication.

    Google Scholar 

  21. D. R. Sandstrom and F. W. Lytle, Ann. Rev. Phys. Chem. 30, 215 (1979).

    Article  Google Scholar 

  22. B. R. Stults, Presented at Amer. Chem. Soc. — Chem. Soc. Japan Chemical Congress, Honolulu, Hawaii, April 1979.

    Google Scholar 

  23. G. S. Knapp, H. Chen, and T. E. Klippert, Rev. Sci. Instrum. 49, 1658 (1978).

    Article  Google Scholar 

  24. S. Doniach, I. Lindau, W. E. Spicer, and H. Winick, J. Vac. Sci. Tech. 12, 1123 (1975).

    Article  Google Scholar 

  25. J. Jaklevic, J. A. Kirby, M. P. Klein, A. S. Robertson, G. S. Brown, and P. Eisenberger, Solid State Comm. 23, 679 (1977).

    Article  Google Scholar 

  26. S. C. Moss, H. Metzger, M. Eisner, H. W. Huang, and S. C. Hunter, Rev. Sci. Instru. 49, 1559 (1978).

    Article  Google Scholar 

  27. E. A. Stern and S. H. Heald, Rev. Sci. Instru. 50, 1579 (1979).

    Article  Google Scholar 

  28. P. Eisenberger and B. M. Kincaid, Science 200, 1441 (1978).

    Article  Google Scholar 

  29. E. A. Stern, Contemp. Phys. 19, 289 (1978).

    Article  Google Scholar 

  30. F. Bigoli, A. Braibanti, A. Tiripicchio, and M. Tiripicchio-Camellini, Acta Crystallogr. Sect. B 27, 1427 (1971).

    Article  Google Scholar 

  31. B. K. Teo and P. A. Lee, J. Am. Chem. Soc. 101, 2815 (1979).

    Article  Google Scholar 

  32. D. R. Sandstrom and J. M. Fine, SSRL Rep. 78/09, Stanford Synchrotron Radiation Lab., Palo Alto, Calif. (1978), pp. 77–78.

    Google Scholar 

  33. G. Martens, P. Rabe, N. Schwenterner, and A. Werner, Phys. Rev. B 17, 1481 (1978).

    Article  Google Scholar 

  34. For example see, B. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. K. Bachman, and D. J. Weinkauff, J. Amer. Chem. Soc. 99, 5946 (1977).

    Article  Google Scholar 

  35. M. D. Fryzuk and B. Bosnich, J. Amer. Chem. Soc. 99, 6262 (1977).

    Article  Google Scholar 

  36. Ligand abbreviations: P-P is Dipamp = (R,R)-1,2-ethanediylbis- [(O-methoxyphenyl)phenylphosphine], Diop = (R,R)-isopropylidene-2,3-dihydroxy1,4-bis-(diphenylphosphino)butane, Diphos = bis(1,2-diphenylphosphino)ethane, Cis-ethylene = cis-bis-(Diphenylphosphino)ethylene; P is Camp = (R)-O-anisylmethyl-cyclohexylphosphine; L = 1,5-cyclooctadiene or bicyclo-[2.2.1]-heptadiene.

    Google Scholar 

  37. J. Halpern, Trans. Amer. Cryst. Assoc., March 20, 1978, pp. 59.

    Google Scholar 

  38. J. M. Brown and P. A. Chaloner, Tetrahedron Lett., 1988 (1978) and J. M. Brown, private communication.

    Google Scholar 

  39. J. Halpern, University of Chicago, private communication.

    Google Scholar 

  40. J. Reed, P. Eisenberger, B. K. Teo, and B. M. Kincaid, J. Am. Chem. Soc. 99, 5217 (1977).

    Article  Google Scholar 

  41. J. Reed, P. Eisenberger, B. K. Teo, and B. M. Kincaid, J. Am. Chem. Soc. 100, 2375 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sandstrom, D.R., Stults, B.R., Greegor, R.B. (1981). Structural Evidence for Solutions from EXAFS Measurements. In: Teo, B.K., Joy, D.C. (eds) EXAFS Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1238-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1238-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1240-7

  • Online ISBN: 978-1-4757-1238-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics