Advertisement

Structural Studies of Superionic Conduction

  • J. B. Boyce
  • T. M. Hayes

Abstract

EXAFS data on the normal and superionic phases of AgI and the cuprous halides have been analyzed using four structural models: harmonic oscillator, displaced site, anharmonic oscillator, and excluded volume. The most satisfactory description is obtained with the last model, based upon a softened hard-sphere pair potential. The results indicate that the tetrahedral locations in the halogen lattice are preferred by the mobile cations, but that at elevated temperatures substantial cation density also occurs at bridging trigonal sites, yielding the conduction path. Potential energy barrier heights are obtained. Finally, by modeling the conducting cations as a Boltzmann gas in the presence of the potential deduced from the EXAFS data, the temperature-dependent DC ionic conductivity is calculated.

Keywords

Octahedral Site Tetrahedral Site Pair Correlation Function Superionic Conduction Solid State Comm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Several review articles have appeared recently: (a) Solid Electrolytes, ed. S. Geller, Vol. 21 of Topics in Applied Physics, Springer-Verlag, Berlin (1977);Google Scholar
  2. 1.(a)
    Solid Electrolytes: General Principles, Characterization, Materials, Applications, ed. P. Hagenmuller and W. von Gool, Academic Press, New York (1977);Google Scholar
  3. 1.(b)
    J. B. Boyce and B. A. Huberman, “Superionic Conductors: Transitions, Structures, Dynamics,” Phys. Reports 51, 189 (1979);CrossRefGoogle Scholar
  4. 1.(c)
    Physics of Superionic Conductors, ed. M. B. Salamon, Vol 15 of Topics in Current Physics, Springer-Verlag, Berlin (1979);Google Scholar
  5. 1.(d)
    Fast Ion Transport in solids, ed. P. Vashishta, J. N. Mundy, and G. K. Shenoy, North-Holland, New York (1979).Google Scholar
  6. 2.
    L. W. Strock, Z. Phys. Chem. Abt. B 25, 411 (1934).Google Scholar
  7. 2.(a)
    L. W. Strock, Z. Phys. Chem. Abt. B 31, 132 (1936).Google Scholar
  8. 3.
    S. Hoshino, J. Phys. Soc. Japan 12, 315 (1957).CrossRefGoogle Scholar
  9. 4.
    G. Burley, J. Chem. Phys. 38, 2807 (1963).CrossRefGoogle Scholar
  10. 5.
    W. Buhrer and W. Halg, Helv. Phys. Acta 47, 27 (1974).Google Scholar
  11. 6.
    A. F. Wright and B. E. F. Fender, J. Phys. C 10, 2261 (1977).CrossRefGoogle Scholar
  12. 7.
    G. Eckold, K. Funke, J. Kalus, and R. E. Lechner, J. Phys. Chem. Solids 37, 1097 (1976), and references contained therein.CrossRefGoogle Scholar
  13. 8.
    J. B. Boyce, T. M. Hayes, W. Stutius, and J. C. Mikkelsen, Jr., Phys. Rev. Lett. 38, 1362 (1977).CrossRefGoogle Scholar
  14. 9.
    R. J. Cava, F. Reidinger, and B. J. Wuensch, Solid State Comm. 24, 411 (1977).CrossRefGoogle Scholar
  15. 10.
    M. Suzuki and H. Okazaki, Phys. Stat. Sol. (a) 42, 133 (1977).CrossRefGoogle Scholar
  16. 11.
    S. Hoshino, T. Sakuma, and Y. Fujii, Solid State Comm. 22, 763 (1977).CrossRefGoogle Scholar
  17. 12.
    J. B. Boyce and J. C. Mikkelsen, Jr., Solid State Comm. 31, 741 (1979).CrossRefGoogle Scholar
  18. 13.
    For a discussion of the various types of transitions and a list of materials in each category, see Ref. lc.Google Scholar
  19. 14.
    M. O’Keeffe and B. G. Hyde, Phil. Mag. 33, 219 (1976) and references therein.CrossRefGoogle Scholar
  20. 15.
    B. A. Huberman, Phys. Rev. Lett. 32, 1000 (1974).CrossRefGoogle Scholar
  21. 16.
    H. Hoshino and M. Shimoji, J. Phys. Chem. Solids 35, 321 (1974).CrossRefGoogle Scholar
  22. 17.
    A. Kvist and A. M. Josefson, Z. Naturforsch 23A, 625 (1968);Google Scholar
  23. H. Hoshino, S. Makino and M. Shimoji, J. Phys. Chem. Solids 35, 667 (1974);CrossRefGoogle Scholar
  24. R. N. Schock and E. Hinze, J. Phys. Chem. Solids 36, 713 (1975);CrossRefGoogle Scholar
  25. P. C. Allen and D. Lazarus, Phys. Rev. B 17, 1913 (1978).CrossRefGoogle Scholar
  26. 18.
    J. B. Wagner and C. Wagner, J. Chem. Phys. 26, 1597 (1957) and references contained therein.CrossRefGoogle Scholar
  27. 18.(a)
    T. Jow and J. B. Wagner, J. Electrochem. Soc. 125, 613 (1978).CrossRefGoogle Scholar
  28. 19.
    For a discussion of EXAFS and applications to superionic conductors see J. B. Boyce and T. M. Hayes, “Structure and Its Influence on Superionic Conduction: EXAFS Studies”, Chapter 2 of Ref. 1d.Google Scholar
  29. 20.
    For a discussion of EXAFS with references to earlier work see the review by T. M. Hayes, J. Non-Cryst. Solids 31, 57 (1978).CrossRefGoogle Scholar
  30. 21.
    N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, third ed., Clarendon Press, Oxford, 1965, p. 562.Google Scholar
  31. 22.
    T. M. Hayes, P. N. Sen, and S. H. Hunter, J. Phys. C 9, 4357 (1976).CrossRefGoogle Scholar
  32. 23.
    B.-K. Teo and P. A. Lee, J. Am. Chem. Soc. 101, 2815 (1979).CrossRefGoogle Scholar
  33. 24.
    P. H. Citrin, P. Eisenberger and B. M. Kincaid, Phys. Rev. Lett. 36, 1346 (1976).CrossRefGoogle Scholar
  34. 25.
    S. Miyake, S. Hoshino, and T. Takenaka, J. Phys. Soc. Japan 7, 19 (1952).CrossRefGoogle Scholar
  35. 26.
    W. Buhrer and W. Halg, Electrochim. Acta 22, 701 (1977).CrossRefGoogle Scholar
  36. 27.
    J. B. Boyce, T. M. Hayes, J. C., Mikkelsen Jr., and W. Stutius, Solid State Comm. 33, 183 (1980).CrossRefGoogle Scholar
  37. 28.
    S. Hoshino, J. Phys. Soc. Japan 7, 560 (1952).CrossRefGoogle Scholar
  38. 29.
    J. B. Boyce, T. M. Hayes, and J. C. Mikkelsen, Jr., Solid State Comm. (in press).Google Scholar
  39. 30.
    M. Sakata, S. Hoshino and J. Harada, Acta Cryst. A 30, 655 (1974).CrossRefGoogle Scholar
  40. 31.
    J. Schreurs, M. H. Mueller, and L. H. Schwartz, Acta Cryst. A 32, 618 (1976).CrossRefGoogle Scholar
  41. 32.
    T. M. Hayes, J. B. Boyce, and J. L. Beeby, J. Phys. C 11, 2931 (1978).CrossRefGoogle Scholar
  42. 33.
    For a review of the molecular dynamics work, see the papers in Ref. le by A. Rahman, p. 643; W. Schommers, p. 625; and P. Vashishta and A. Rahman, p. 527.Google Scholar
  43. 34.
    W. H. Flygare and R. A. Huggins, J. Phys. Chem. Solids 34, 1199 (1973).CrossRefGoogle Scholar
  44. 35.
    T. Matsubara, J. Phys. Soc. Japan 38, 1076 (1975).CrossRefGoogle Scholar
  45. 36.
    J. Harada, H. Suzuki, and S. Hoshino, J. Phys. Soc. Japan 41, 1707 (1976).CrossRefGoogle Scholar
  46. 37.
    V. Valvoda and J. Jecny, Phys. Stat. Sol. (a) 45, 269 (1978).CrossRefGoogle Scholar
  47. 38.
    L. V. Azaroff, J. Appl. Phys. 32, 1658 (1961).CrossRefGoogle Scholar
  48. 39.
    B. Bunker, private communication.Google Scholar
  49. 40.
    J. B. Boyce and B. A. Huberman, Solid State Comm. 21, 31 (1977).CrossRefGoogle Scholar
  50. 41.
    W. Jost, Diffusion in Solids, Liquids and Gases, Academic Press, New York, 1960, p. 188.Google Scholar
  51. 42.
    T. M. Hayes and J. B. Boyce, Phys. Rev. B 21, 2513 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • J. B. Boyce
    • 1
  • T. M. Hayes
    • 1
  1. 1.Xerox Palo Alto Research CenterPalo AltoUSA

Personalised recommendations