ras Oncogenes pp 311-318 | Cite as

The Cooperation between Viral ras Genes and Different Immortalizing Genes Induces the Transformation of Rat Thyroid Epithelial Cells

  • A. Fusco
  • M. T. Berlingieri
  • M. Grieco
  • M. Santoro
  • G. Vecchio


Oncogenes of the ras family have been isolated from different human and experimental carcinomas by transfecting high molecular weight DNA onto NIH 3T3 fibroblasts. The activated ras genes differ from normal ones by point mutations in specific regions of the genes (1, 2) . This finding has allowed to establish new more sophisticated and more sensitive techniques to evidenciate point mutations of the ras genes in human tumors. In fact, using a combinations of techniques, including specific in vitro gene amplification by the polymerase chain reaction (PCR) and mutation detection by cleavage at single base mismatches by RNAase A in DNA:RNA and RNA:RNA heteroduplexes, it has been possible to evidentiate point mutations of the ras-Ki oncogene in 21 out of 22 human carcinomas of the exocrine pancreas and in the 40% of the human colorectal cancers (3, 4) . However, a problem that could be raised is whether or not these mutations in the ras genes are the unique events responsible for the carcinogenesis process. In fact, studies of chemical carcinogenesis, as well as epidemiological analysis of malignancies in humans (5, 6, 7), strongly suggest that the neoplastic transformation is a multistage process and the observation that two different oncogenes are required in concert for malignant conversion of nonestablished rat cells confirms this point of view (8, 9).


Polyoma Virus Single Base Mismatch Harvey Murine Sarcoma Virus Immortalize Gene Primary Embryo Fibroblast 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Barbacid, ras genes, Annu. Rev. Biochem. 56:779 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    H.E. Varmus, The molecular genetics of cellular oncogenes, Annu. Rev. Genet. 18:553 (1984).PubMedCrossRefGoogle Scholar
  3. 3.
    C. Almoguera, D. Shibata, K. Forrester, J. Martin, N. Arnheim, and M. Perucho, Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes, Cell 53:549 (1988).PubMedCrossRefGoogle Scholar
  4. 4.
    J.L. Bos, E.R. Fearon, S.R. Hamilton, M. Verlaan-de Vries, J.H. Van Boom, A.J. van der Eb and B. Vogelstein, Prevalence of ras gene mutations in human colorectal cancers, Nature 327:293 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    I. Beremblum, The mechanism of carcinogenesis, Cancer Res. 1:807 (1941).Google Scholar
  6. 6.
    P. Armitage and R. Doll, The age distribution of cancer and a multistage theory of carcinogenesis Br. J. Cancer 8:1 (1954).PubMedCrossRefGoogle Scholar
  7. 7.
    J. Cairns, Mutation selection and the natural history of cancer, Nature, 255:197 (1975).PubMedCrossRefGoogle Scholar
  8. 8.
    H. Land, L.F. Parada and R.A. Weimberg, Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes, Nature, 304:596 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    H.E. Ruley, Adenovirus early region ElA enables viral and cellular transforming genes to transform primary cells in culture, Nature 304:602 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Fusco, M.T. Berlingieri, P.P. Di Fiore, G. Portella, M. Grieco, and G. Vecchio, One- and two-step transformation of rat thyroid epithelial cells by retroviral oncogenes, Mol. Cell. Biol. 2:3365(1987).Google Scholar
  11. 11.
    N. Stow, The infectivity of Adenovirus genomes lacking DNA sequences from their left-hand termini, Nucleic Acid Res. 5105 (1982).Google Scholar
  12. 12.
    M. Rassoulzadegan, A. Cowie, A. Carr, N. Gleichenhaus, R. Kamen and F. Cuzin, The roles of individual Polyoma virus early protein in oncogenic transformation, Nature 300:713 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    G. Falcone, I.C. Summerhayes, H. Peterson, C.J. Marshall and A. Hall, Partial transformation of mouse fibroblats and epithelial cell lines with the v-myc oncogene. Exp. Cell Res. 168:273 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    D. Spandidos, Mechanisms of carcinogenesis: the role of oncogenes, transcriptional enhancers and growth factors, Anticancer Res., 5:485 (1985).PubMedGoogle Scholar
  15. 15.
    F.L. Graham and A.J. van der Eb, A new technique for the assay of the infectivity of human adenovirus 5 DNA, Virology, 52: 456 (1973).PubMedCrossRefGoogle Scholar
  16. 16.
    K. Nishikura, A.A. Rushdi, J. Erikson, R. Watt, G. Rovera and C.M. Croce. Differential expression of the normal and the translocated human c-myc oncogenes in B cells, Proc. Natl. Acad. Sci. U.S.A., 80:4822 (1983).PubMedCrossRefGoogle Scholar
  17. 17.
    A.J. Berk and P.A. Sharp, Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrid, Cell, 12:721 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    A.M. Maxam and W. Gilbert, Sequencing labeled DNA with base specific chemical changes cleavages, Methods Enzymol., 65:499 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • A. Fusco
    • 1
    • 2
  • M. T. Berlingieri
    • 1
  • M. Grieco
    • 1
  • M. Santoro
    • 1
  • G. Vecchio
    • 1
  1. 1.Centro di Endocrinologia ed Oncologia del C.N.R. e/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, II Facoltà di Medicina e ChirurgiaUniversità di NapoliNapoliItaly
  2. 2.Istituto di Oncologia Sperimentale e Clinica, Facoltà di Medicina e Chirurgia di CatanzaroUniversità di Reggio CalabriaCatanzaroItaly

Personalised recommendations