The Electrocardiogram and Its Relationship to Excitation of the Heart

  • Roger C. Barr
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 34)


If voltage is recorded as a function of time between two electrodes separated on the body surface, a sufficiently sensitive amplifier will show that a changing voltage exists between the two electrodes that has the same periodicity as the heartbeat. A.D. Waller {1} and others demonstrated around 1900 that this voltage originates in the electrical activity of the heart. Accurate measurement of such electrocardiograms (ECGs) was greatly facilitated by the invention of the string galvanometer by Einhoven {2}. The string galvanometer, although bulky, was the first recording instrument capable of producing electrocardiograms comparable in fidelity to those observed today.


Body Surface Potential Distribution Volume Conductor Electrical Event Cardiac Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Waller AD: On the electromotive changes connected with the beat of the mammalian heart and of the human heart in particular. Philos Trans R Soc [B] 180: 169–94, 1889.CrossRefGoogle Scholar
  2. 2.
    Einthoven W, Fahr G, De Waart A: Uber die Richtung und manifeste Grosse der Potentialschwankungen im menschlichen Herzen und uber den Einfluss der Herzlage auf die Form des Elektrocardiograms. Pflugers Arch ges Physiol 150: 275–315, 1913.CrossRefGoogle Scholar
  3. Einthoven W, Fahr G, De Waart A: Uber die Richtung und manifeste Grosse der Potentialschwankungen im menschlichen Herzen und uber den Einfluss der Herzlage auf die Form des Elektrocardiograms. Am Heart J 40: 163–211.Google Scholar
  4. 3.
    Lewis T, Rothschild MA: The excitatory process in the dog’s heart. II. The ventricles. Philos Trans R Soc [B] 206: 181–226, 1915.CrossRefGoogle Scholar
  5. 4.
    Goldman MJ: Principles of clinical electrocardiography, 10th edn. Los Altos CA: Lange Medical.Google Scholar
  6. 5.
    Flowers NC, Shvartsman V, Kennelly BM, Sohi GS, Horan LG: Surface recording of His-Purkinje activity on an every-beat basis without digital averaging. Circulation 63: 948–952, 1981.PubMedCrossRefGoogle Scholar
  7. 6.
    Association for the Advancement of Medical Instrumentation: Standard for diagnostic ECG devices. Arlington VA: AAMI (1901 North Fort Meyer Drive, Suite 602, Arlington VA 22209).Google Scholar
  8. 7.
    Spach MS, Barr RC, Haystad JW, Long EC: Skin electrode impedance and its effect on recording cardiac potentials. Circulation 34: 649–656, 1966.PubMedCrossRefGoogle Scholar
  9. 8.
    Schmitt OH, Almasi JJ: Electrode impedance and voltage offset as they affect efficacy and accuracy of VCG and ECG measurement. In: Proceedings of the 11th international vectorcardiography symposium. Amsterdam: North-Holland, 1970.Google Scholar
  10. 9.
    Huhta JC, Webster JG: 60-Hz interference in electrocardiography. IEEE Trans Biomed Eng 20: 91–101, 1973.PubMedCrossRefGoogle Scholar
  11. 10.
    American Heart Association Committee on Electrocardiography: Electrical safety standards for electrocardiographic apparatus. Circulation 61: 669, 1980.Google Scholar
  12. 11.
    Wilson FN, Macleod AG, Barker PS: The order of ventricular excitation in bundle branch block. Am Heart J 7: 305–330, 1932.CrossRefGoogle Scholar
  13. 12.
    Goldberger E: Unipolar lead electrocardiography and vectorcardiography. Philadelphia: Lea and Febiger, 1953.Google Scholar
  14. 13.
    Frank E: An accurate clinically practical system for spatial vectorcardiography. Circulation 13: 737–749, 1956.PubMedCrossRefGoogle Scholar
  15. 14.
    Barr RC, Spach MS, Herman-Giddens GS: Selection of the number and positions of measuring locations for electrocardiography. IEEE Trans Biomed Eng 18: 125–38, 1971.PubMedCrossRefGoogle Scholar
  16. 15.
    Lux RL, Smith CR, Wyatt RF, Abildskov JA: A limited lead selection for estimation of body surface potential maps in electrocardiography. IEEE Trans Biomed Eng 25: 270–276, 1978.PubMedCrossRefGoogle Scholar
  17. 16.
    Goldberger AL, Bhargava V, Froelicher V, Covell J: Effect of myocardial infarction on high-frequency QRS potentials. Circulation 64: 34–42, 1981.PubMedCrossRefGoogle Scholar
  18. 17.
    Barr RC, Spach MS: Sampling rates required for digital recording of intracellular and extracellular cardiac potentials. Circ Res 55: 40–48, 1977.CrossRefGoogle Scholar
  19. 18.
    McFee R, Baule GM: Research in electrocardiography and magnetocardiography. Proc IEEE 60: 290–322, 1972.CrossRefGoogle Scholar
  20. 19.
    De Mello WC: Intracellular communication in cardiac muscle. Circ Res 51: 1–9, 1982.PubMedCrossRefGoogle Scholar
  21. 20.
    Eycleshymer AC, Schoemaker DM: A cross-section anatomy. New York: Appleton-Century-Crofts, 1911.Google Scholar
  22. 21.
    Spach MS, Barr RC, Johnson EA, Kootsey JM: Cardiac extracellular potentials: analysis of complex wave forms about the Purkinje network in dogs. Circ Res 33: 465–473, 1973.PubMedCrossRefGoogle Scholar
  23. 22.
    Burger HC, Van Milaan JB: Heart vector and leads. I, II, and III. Br Heart J 8:157, 1946; 9:154, 1947; 10: 229, 1948.Google Scholar
  24. 23.
    Scher A, Young A: The pathway of ventricular depolarization in the dog. Circ Res 4: 461–469, 1956.PubMedCrossRefGoogle Scholar
  25. 24.
    Durrer D, Van Dam R, Freud MG, Janse MJ, Meijler FL, Arzbaecher RC: Total excitation of the heart. Circulation 41: 899–912, 1970.PubMedCrossRefGoogle Scholar
  26. 25.
    Spach MS, Barr RC, Lanning CF, Tucek PC: Origin of body surface QRS and T wave potentials from epicardial potential distributions in the intact chimpanzee. Circulation 55: 268–278, 1977.PubMedCrossRefGoogle Scholar
  27. 26.
    Miller WT III, Geselowitz DB: Simulation studies of the electrocardiogram II. Ischemia and infarction. Circ Res 43: 315–23, 1978.PubMedCrossRefGoogle Scholar
  28. 27.
    Ramsey M III, Barr RC, Spach MS: Comparison of measured torso potentials with those simulated from epicardial potentials for ventricular depolarization and repolarization in the intact dog. Circ Res. 41: 660–672, 1977.PubMedCrossRefGoogle Scholar
  29. 28.
    Rudy Y, Plonsey R: A comparison of volume conductor and source geometry effects on body surface and epicardial potentials. Circ Res 46: 283–291, 1980.PubMedCrossRefGoogle Scholar
  30. 29.
    Meiler FL: In: A new coding system for electrocardiography. Amsterdam: Excerpta Medica, EO Robles de Medina, 1972.Google Scholar
  31. 30.
    Plonsey R: Bioelectric phenomena. New York: McGraw-Hill, 1969, pp 202–275.Google Scholar
  32. 31.
    Hurst JW, Logue RB, Schlant, Wenger NK: The heart, 4th edn. New York: McGraw-Hill, 1978, p 309.Google Scholar
  33. 32.
    Pipberger HV, Schneiderman MA, Klingeman JD: The love-at-first-sight effect in research. Circulation 38: 822–825, 1968.PubMedCrossRefGoogle Scholar
  34. 33.
    Gabor D, Nelson CV: Determination of the resultant dipole of the heart from measurements on the body surface. J Appl Physiol 25: 413–16, 1954.CrossRefGoogle Scholar
  35. 34.
    Geselowitz DB: Two theorems concerning the quadrupole applicable to electrocardiography. IEEE Trans Biomed Eng 12: 164–168, 1965.PubMedCrossRefGoogle Scholar
  36. 35.
    Ideker RE, Bandura JP, Larsen RA, Cox JW, Keller FW, Brody DA: Localization of heart vectors produced by epicardial burns and ectopic stimuli. Circ Res 36: 105–112, 1975.PubMedCrossRefGoogle Scholar
  37. 36.
    Savard P, Roberge FA, Perry JB, Nadeau RA: Representation of cardiac electrical activity by a moving dipole for normal and ectopic beats in the intact dog. Circ Res 46: 415–425, 1980.PubMedCrossRefGoogle Scholar
  38. 37.
    Taccardi B: Distribution of heart potentials on the thoracic surface of normal human subjects. Circ Res 12: 341–352, 1963.PubMedCrossRefGoogle Scholar
  39. 38.
    Rush S, Lepeschkin: Body surface mapping of cardiac fields. Adv. Cardiol. 10, Karger, 1974.Google Scholar
  40. 39.
    Holt J, Barnard ACL, Lynn M: The study of the human heart as a multiple dipole source II. Diagnosis and quantization of left ventricular hypertrophy. Circ Res 40: 697–710, 1969.CrossRefGoogle Scholar
  41. 40.
    Barr RC, Spach MS: Inverse calculations of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog. Circ Res 42: 661–75, 1978.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1984

Authors and Affiliations

  • Roger C. Barr

There are no affiliations available

Personalised recommendations