The Ionic Basis of Electrical Activity in the Heart

  • Robert S. Kass
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 34)


Cardiac muscle, like skeletal muscle and nerve, belongs to a class of tissues referred to as excitable cells. This classification reflects the ability of these cells to propagate impulses in a regenerative manner. The electrical activity of nerve and skeletal muscle is rather uniform and is generated by similar ionic mechanisms. In contrast, the electrical activity in different regions of the heart consists of clearly distinguishable action potentials. This diversity of action potential configuration reflects the multiple roles of electrical activity in the heart. Despite regional differences, however, these electrical impulses are generated by membrane permeability mechanisms that generally resemble those in other excitable cells.


Outward Current Sodium Current Purkinje Fiber Pacemaker Activity Pacemaker Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hogan PM, Davis LD: Evidence for specialized fibers in the canine right atrium. Circ Res 23: 387–396, 1968.PubMedCrossRefGoogle Scholar
  2. 2.
    Noble D: The initiation of the heartbeat. London: Oxford, 1979.Google Scholar
  3. 3.
    Cranefield PF: The conduction of the cardiac impulse. Mt Kisco NY: Futura, 1975.Google Scholar
  4. 4.
    Hoffman BF, Cranefield PF: Electrophysiology of the heart. Mt Kisco NY: Futura, 1976.Google Scholar
  5. 5.
    Hodgkin AL, Rushton WAH: The electrical constants of a crustacean nerve fiber. Proc R Soc B133: 444–479, 1946.CrossRefGoogle Scholar
  6. 6.
    Hille B: Rate theory models of ion flow in ionic channels of nerve and muscle. In: Stevens CF, Tsien RW (eds) Membrane transport processes, vol 3. New York: Raven, 1979.Google Scholar
  7. 7.
    Fozzard HA: Membrane capacity of the cardiac Purkinje fibre. J Physiol 182: 255–267, 1966.PubMedGoogle Scholar
  8. 8.
    Carmeliet E, Willems J: The frequency dependent character of the membrane capacity in cardiac Purkinje fibres. J Physiol 213: 85–84, 1971.PubMedGoogle Scholar
  9. 9.
    Strichartz GR, Cohen IS: V,,,ax as a measure of GNa in nerve and cardiac membranes. Biophysical J 23: 153–156, 1978.CrossRefGoogle Scholar
  10. 10.
    Kass RS, Siegelbaum SA, Tsien RW: Three-microelectrode voltage clamp experiments in calf cardiac Purkinje fibers: is slow inward current adequately measured? J Physiol 290: 201–225, 1979.PubMedGoogle Scholar
  11. 11.
    Lee KS, Weeks TA, Kao RL, Akaike N, Brown AM: Sodium current in single heart muscle cells. Nature 278: 269–271, 1979.PubMedCrossRefGoogle Scholar
  12. 12.
    Colatsky TJ, Tsien RW: Sodium channels in rabbit cardiac Purkinje fibres. Nature 278: 265–268, 1979.PubMedCrossRefGoogle Scholar
  13. 13.
    Draper MH, Weidmann S: Cardiac resting and action potentials recorded with an intracellular electrode. J Physiol 115: 74–94, 1951.PubMedGoogle Scholar
  14. 14.
    Weidman S: The effect of the cardiac membrane potential on the rapid availability of the sodium carrying system. J Physiol 127: 213, 1955.Google Scholar
  15. 15.
    Weidmann S: Effects of calcium ions and local anaesthetics on electrical properties of Purkinje fibres. J Physiol 129: 568–582, 1955.PubMedGoogle Scholar
  16. 16.
    Colatsky TJ: Voltage clamp measurements of sodium channel properties in rabbit cardiac Purkinje fibres. J Physiol 305: 215–234, 1980.PubMedGoogle Scholar
  17. 17.
    Ebihara L, Shigeto N, Lieberman M, Johnson EA: The initial inward current in spherical clusters of chick embryonic heart cells. J Gen Physiol 75: 437–456, 1980.PubMedCrossRefGoogle Scholar
  18. 18.
    Brown AM, Lee KS, Powell T: Sodium current in single rat heart muscle cells. J Physiol 318: 479–500, 1981.PubMedGoogle Scholar
  19. 19.
    Attwell D, Cohen I, Eisner D, Ohba M, Ojeda C: The steady state TTX-sensitive (“window”) sodium current in cardiac Purkinje fibres. Pflugers Arch 379: 137–142, 1979.PubMedCrossRefGoogle Scholar
  20. 20.
    Colatsky TJ, Gadsby DC: Is tetrodotoxin block of background sodium channels voltage-dependent? J Physiol 306: 20P, 1980.Google Scholar
  21. 21.
    Coltasky TJ: Mechanisms of action of lidocaine and quinidine on action potential duration in rabbit cardiac Purkinje fibers: an effect on steady state sodium currents. Circ Res 50: 17–27, 1982.CrossRefGoogle Scholar
  22. 22.
    Dudel J, Peper K, Rudel R, Trautwein W: Excitatory membrane current in heart muscle (Purkinje fibres). Pflugers Arch 292: 255–273, 1966.CrossRefGoogle Scholar
  23. 23.
    Coraboeuf E, Derobaix E, Coulombe A: Effect of tetrodotoxin on action potentials of the conducting system in the dog heart. Am J Physiol 236: H561 - H567, 1979.PubMedGoogle Scholar
  24. 24.
    Cohen CJ, Bean BP, Colatsky TJ, Tsien RW: Tetrodotoxin block of sodium channels in rabbit Purkinje fibers. J Gen Physiol 78: 383–411, 1981.PubMedCrossRefGoogle Scholar
  25. 25.
    Cranefield PF: Action potentials, afterpotentials, and arrhythmias. Circ Res 41: 415–423, 1977.PubMedCrossRefGoogle Scholar
  26. 26.
    Noma A, Yanagihara K, Irisawa H: Inward current of the rabbit sinoatrial node cell. Pflugers Arch 372: 43–51, 1977.PubMedCrossRefGoogle Scholar
  27. 27.
    Brown H, Di Francesco D: Voltage-clamp investigations of membrane currents underlying pace-maker activity in rabbit sino-atrial node. J Physiol 308: 331–351, 1980.PubMedGoogle Scholar
  28. 28.
    McAllister RE, Noble D, Tsien RW: Reconstruction of the electrical activity of cardiac Purkinje fibres. J Physiol 251: 1–59, 1975.PubMedGoogle Scholar
  29. 29.
    Beeler GW, Reuter H: Reconstruction of the action potential of ventricular myocardial fibres. J Physiol 268: 177–210, 1977.PubMedGoogle Scholar
  30. 30.
    Reuter H: The dependence of slow inward current in Purkinje fibres on the extracellular calcium concentration. J Physiol 192: 479–492, 1967.PubMedGoogle Scholar
  31. 31.
    Vitek M, Trautwein W: Slow inward current and action potential in cardiac Purkinje fibres: the effect of Mn ions. Pflugers Arch 323: 204, 1971.PubMedCrossRefGoogle Scholar
  32. 32.
    Beeler GW Jr, Reuter H: Membrane calcium current in ventricular myocardial fibres. J Physiol 207: 191–209, 1970.PubMedGoogle Scholar
  33. 33.
    Rougier O, Vassort G, Gamier D, Gargouil YM, Coraboeuf E: Existence and role of a slow inward current during the frog atrial action potential. Pflugers Arch 308: 91–110, 1969.PubMedCrossRefGoogle Scholar
  34. 34.
    New W, Trautwein W: Inward membrane currents in mammalian myocardium. Pflugers Arch 334: 1–23, 1972.PubMedCrossRefGoogle Scholar
  35. 35.
    Reuter H: Properties of two inward membrane currents in the heart. Annu Rev Physiol 41: 413–424, 1979.PubMedCrossRefGoogle Scholar
  36. 36.
    Isenberg G, Klockner U: Glycocalyx is not required for slow inward calcium current in isolated rat heart myocytes. Nature 284: 358–360, 1980.PubMedCrossRefGoogle Scholar
  37. 37.
    Hume JR, Giles W: Active and passive electrical properties of single bullfrog cells. J Gen Physiol 78: 19–42, 1981.PubMedCrossRefGoogle Scholar
  38. 38.
    Lee KS, Lee EW, Tsien RW: Slow inward current carried by Cat+ or Bat+ in single isolated heart cells. Biophys J 33: 143a, 1981.Google Scholar
  39. 39.
    Lee KS, Tsien RW: Reversal of current through calcium channels in dialyzed single heart cells. Nature 297: 498–501, 1982.PubMedCrossRefGoogle Scholar
  40. 40.
    Reuter H, Stevens CF, Tsien RW, Yellen G: Properties of single calcium channels in cultured cardiac cells. Nature 297: 501–504, 1982.PubMedCrossRefGoogle Scholar
  41. 41.
    Hagiwara S, Byerly L: Calcium channel. Annu Rev Neurosci 4: 69–125, 1981.PubMedCrossRefGoogle Scholar
  42. 42.
    Tsien RW: Calcium channels in excitable cell membranes. Annu Rev Physiol 45: 341–58, 1983.PubMedCrossRefGoogle Scholar
  43. 43.
    Reuter H, Scholz A: A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle. J Physiol 264: 17–47, 1977.PubMedGoogle Scholar
  44. 44.
    Kass RS, Tsien RW: Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers. J Gen Physiol 66: 169–192, 1975.PubMedCrossRefGoogle Scholar
  45. 45.
    Kass RS: Nisoldipine: a new, more selective calcium current blocker in the cardiac Purkinje fiber. J Pharmacol Exp Ther 223: 446–456, 1982.PubMedGoogle Scholar
  46. 46.
    Giles W, Noble SJ: Changes in membrane currents in bullfrog atrium produced by acetylcholine. J Physiol 261: 103–123, 1976.PubMedGoogle Scholar
  47. 47.
    Ten Eick R, Nawrath H, McDonald TF, Trautwein W: On the mechanism of the negative inotropic effect of acetylcholine. Pfluger Arch 361: 207–213, 1976.CrossRefGoogle Scholar
  48. 48.
    Kass RS, Wiegers SE: Ionic basis of concentration-related effects of noradrenaline on the action potential of cardiac Purkinje fibres. J Physiol 322: 541–558, 1982.PubMedGoogle Scholar
  49. 49.
    Reuter H, Scholz H: The regulation of Ca conductance of cardiac muscle by adrenaline. J Physiol 264: 49–62, 1977.PubMedGoogle Scholar
  50. 50.
    Noble D, Tsien RW: Outward membrane currents activated in the plateau range of potentials in cardiac Purkinje fibers. J Physiol 200: 205–231, 1969.PubMedGoogle Scholar
  51. 51.
    Di Francesco D, Noma A, Trautwein W: Kinetics and magnitude of the time-dependent potassium current in the rabbit S-A node. Pflugers Arch 381: 271–279, 1979.CrossRefGoogle Scholar
  52. 52.
    McDonald TF, Trautwein W: Membrane currents in cat myocardium: separation of inward and outward components. J Physiol 274: 193–216, 1978.PubMedGoogle Scholar
  53. 53.
    Meier CF, Katzung BG: Cesium blockade of delayed outward currents and electrically induced pacemaker in mammalian ventricular myocardium. J Gen Physiol77: 531–547, 1981.Google Scholar
  54. 54.
    Brown HF: Electrophysiology of the sinoatrial node. Physiol Rev 62: 505–530, 1982.PubMedGoogle Scholar
  55. 55.
    Hauswirth O, Noble D, Tsien RW: The mechanism of oscillatory activity at low membrane potentials in cardiac Purkinje fibres. J Physiol 200: 255–265, 1969.PubMedGoogle Scholar
  56. 56.
    Kass RS, Scheuer T, Malloy KJ: Block of outward current in cardiac Purkinje fibers by injection of quaternary ammonium ions. J Gen Physiol 79: 1041–1063, 1982.PubMedCrossRefGoogle Scholar
  57. 57.
    Tsien RW, Giles WR, Greengard P: Cyclic AMP mediates the action of epinephrine on the action potential plateau of cardiac Purkinje fibres. Nature [New Biol] 240: 181–183, 1972.Google Scholar
  58. 58.
    Dudel J, Peper K, Rudel R, Trautwein W: The dynamic chloride component of membrane current in Purkinje fibers. Pflugers Arch 295: 197–212, 1967.CrossRefGoogle Scholar
  59. 59.
    Fozzard HA, Hiraoka M: The positive dynamic current and its inactivation properties in cardiac Purkinje fibers. J Physiol 234: 569–586, 1973.PubMedGoogle Scholar
  60. 60.
    Kenyon JL, Gibbons WR: Influence of chloride, potassium, and tetraethylammonium on the early outward current of sheep cardiac Purkinje fibers. J Gen Physiol 73: 117–138, 1979.PubMedCrossRefGoogle Scholar
  61. 61.
    Kenyon JL, Gibbons WR: 4-Amminopyridine and the early outward current of sheep cardiac Purkinje fibers. J Gen Physiol 73: 139–157, 1979.PubMedCrossRefGoogle Scholar
  62. 62.
    Marban E: Inhibition of transient outward current by intracellular ion substitution unmasks slow inward current in cardiac Purkinje fibers. Pflugers Arch 390: 102–106, 1981.PubMedCrossRefGoogle Scholar
  63. 63.
    Marban E, Tsien RW: Effects of nystatin-mediated intracellular ion substitution on membrane currents in calf Purkinje fibres. J Physiol 329: 569–81, 1982.PubMedGoogle Scholar
  64. 64.
    Coraboeuf E, Carmeliet E: Existence of two transient outward currents in sheep cardiac Purkinje fibers. Pflugers Arch 392: 352–359, 1982.PubMedCrossRefGoogle Scholar
  65. 65.
    McDonald TF, Pelzer D, Trautwein W: On the mechanism of slow calcium channel block in heart. Pflugers Arch 385: 175–179, 1980.PubMedCrossRefGoogle Scholar
  66. 66.
    Siegelbaum SA, Tsien RW, Kass RS: Role of intracellular calcium in the transient outward current of calf Purkinje fibers. Nature 269: 611–613, 1977.PubMedCrossRefGoogle Scholar
  67. 67.
    Siegelbaum SA, Tsien RW: Calcium-activated outward current in calf cardiac Purkinje fibres. J Physiol 299: 485–506, 1980.PubMedGoogle Scholar
  68. 68.
    Kass RS: Delayed rectification is not a calcium activated current in cardiac Purkinje fibers. Biophys J 37: 342a, 1982.Google Scholar
  69. 69.
    Tsien RW, Siegelbaum S: Excitable tissues: the heart. In: Andreoli T, Hoffman JF, Fanestil D (eds) The physiological basis of biomembranes. New York: Plenum, 1978.Google Scholar
  70. 70.
    Vassale M: Analysis of cardiac pacemaker potential using a “voltage clamp” technique. Am J Physiol 210: 1335–1341, 1966.Google Scholar
  71. 71.
    Noble D, Tsien RW: The kinetics and rectifier properties of the slow potassium current in cardiac Purkinje fibres. J Physiol 195: 185–213, 1968.PubMedGoogle Scholar
  72. 72.
    Maylie JM, Morad M, Weiss J: A study of pacemaker potential in rabbit sinoatrial node measurement of potassium activity under voltage clamp conditions. J Physiol 311: 161–178, 1981.PubMedGoogle Scholar
  73. 73.
    Baumgarten CM, Isenberg G: Depletion and accumulation of potassium in the extracellular clefts of cardiac Purkinje fibers. Pflugers Arch 368: 19–31, 1977.PubMedCrossRefGoogle Scholar
  74. 74.
    Di Francesco D, Ohba M, Ojeda C: Measurement and significance of the reversal potential for the pacemaker current (IKZ) in sheep Purkinje fibres. J Physiol 297: 135–162, 1979.Google Scholar
  75. 75.
    Di Francesco D: A new interpretation of the pacemaker current IKZ in Purkinje fibers. J Physiol 314: 359–376, 1981.Google Scholar
  76. 76.
    Tsien RW: Effects of epinephrine on the pacemaker potassium current of cardiac Purkinje fibers. J Gen Physiol 64: 293–319, 1977.CrossRefGoogle Scholar
  77. 77.
    Vaughan-Jones RD, Lederer WJ, Eisner DA: The electrogenic Na-K pump in the sheep cardiac Purkinje fibre. In: Progress in enzyme and ion-selective electrodes. Berlin: Springer-Verlag, 1981, pp 156–163.CrossRefGoogle Scholar
  78. 78.
    Noma A, Kotake H, Irisawa H: Slow inward current and its role mediating the chronotropic effect of epinephrine in the rabbit sinoatrial node. Pflugers Arch 388: 1–9, 1980.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1984

Authors and Affiliations

  • Robert S. Kass

There are no affiliations available

Personalised recommendations